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Abstract—Long-term planning in power systems requires sim-
ulations of unit commitment (UC) for long time periods up to
20 years. Such simulations are conducted with production cost
models (PCMs), which involve solving large-scale mixed-integer
programming (MIP) problems with a large number of variables
and constraints, because of the long planning horizon. We have
developed new optimization modeling and solution techniques
based on a decomposition scheme to reduce the solution time and
improve the accuracy in PCMs. We propose a temporal decom-
position that solves the UC problem by systematically decoupling
the long-horizon MIP problem into several subhorizon models.
The decomposition is obtained by the Lagrangian relaxation of
the time-coupling constraints such as ramping constraints and
minimum uptime/downtime constraints. The key challenge is to
solve several sub-MIP problems while effectively searching for
dual variables to accelerate the convergence of the algorithm.
We implement the temporal decomposition in an open-source
parallel decomposition framework, which can solve the multiple
subproblems in parallel on high-performance computing clusters.
We also implement the branch-and-bound method on top of
the decomposition in order to find a primal optimal solution.
Numerical results of the decomposition method are reported for
the IEEE 118-bus and PEGASE 1354-bus test systems with up
to an 168-hour time horizon.

Index Terms—Production cost model, mixed-integer program-
ming, decomposition method, parallel computing

NOMENCLATURE

Sets:
G Generators
Gn Generators at bus n
K Generation cost blocks
L Transmission lines
L+
n Transmission lines to bus n
L−n Transmission lines from bus n
N Buses
T Time periods, = {1, . . . , T}, where T is the number

of periods.
Parameters:
Bl Susceptance of transmission line l
Cgk Generation cost of generator g for generation cost

block k
Dnt Demand load of bus n at time t
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DTg Minimum downtime of generator g
Fl Power capacity of transmission line l
Pmaxg Maximum power generation of generator g
Pming Minimum power generation of generator g
R+
g Ramp-up capacity of generator g

R−g Ramp-down capacity of generator g
Sg Startup cost of generator g
Kg Commitment cost of generator g
UTg Minimum uptime of generator g
γ+ Spinning-up reserve requirement
γ− Spinning-down reserve requirement
Θmin
n Minimum phase-angle of bus n

Θmax
n Maximum phase-angle of bus n

Variables:
flt Power flow in transmission line l at time t
pgt Power generation from generator g at time t
sgkt Power generation from generator g at price block

k at time t
r+gt Reserve-up generation of generator g at time t
r−gt Reserve-down generation of generator g at time t
ugt Commitment of generator g at time t
vgt Startup of generator g at time t
θnt Phase-angle of bus n at time t

I. INTRODUCTION

Production cost models (PCMs) are a class of computational
tools that simulate power system operations over an extended
(multimonth or multiyear) time horizon. The models leverage
optimization techniques to compute unit commitment (UC)
and economic dispatch (ED) schedules for a power system.
PCMs are the dominant approach to performing cost-benefit
analyses in the electricity grid industry. System operators,
utilities, generation companies, regulators, and policy ana-
lysts use PCMs for long-term planning purposes, analyzing
the impacts of potential future configurations of the power
system. For instance, PCMs are frequently used in renewable
integration studies (e.g. [1]). However, as the power system
evolves in terms of scale (e.g., the growing size of indepen-
dent system operators) and structure (e.g., rapidly increasing
renewables penetration rates [2], the introduction of smart grid
technologies [3]), current PCMs are not adequately addressing
the requirements with respect to the future power grid. For
example, model resolution is currently sacrificed in order to
obtain tractable run times, and improved algorithms are needed
to better capture the impact of the uncertainty associated
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with renewables. Consequently, PCMs increasingly do not
reflect the evolving grid reality and consequently impact the
accuracy of cost-benefit analyses that decision makers use to
guide investment, regulations, and policy in the electric power
industry.

The major challenge that hinders high-fidelity, multiscenario
PCM simulation is computational tractability. In a realistic
PCM simulation performed by system operators, the system
may consist of several hundreds to thousands of buses and
hundreds of generators. The PCM simulations could extend the
individual UC optimization problem for multiple weeks. For a
real system with a multiyear simulation period, weekly opti-
mization horizon for the underlying UC problems, and hourly
time resolution, the computational time is often impractical,
especially when multiple scenarios are to be evaluated.

A number of researchers have proposed approaches to
reduce the computational burden, such as a rolling horizon
approach [4], time-domain partitioning [5], and various de-
composition and inexact approximations (e.g., [6]–[9]). A
rolling-horizon approach has been used in many studies (e.g.,
[4]). Although this approach reflects the daily operational
practice in electricity markets, it only provides a suboptimal
solution to the UC problem for a given planning horizon.
Benders decomposition, as used in [6] cannot be applied
to our problem since the integer variables appeared in the
subproblems. If the integer restrictions are relaxed, significant
optimality gaps occur, as shown in [10]. The approaches used
in [7]–[9] are also based on the Lagrangian relaxation, which
provides lower and upper bounds due to duality gap.

In essence, most PCMs today end up solving a number
of deterministic multi-day/week UC optimization problems
in sequence, and this is where most of the computational
effort is required. The UC problem is a fundamental part of
power system planning and operation and is also a notoriously
hard problem to solve from an optimization perspective, given
the binary decision variables and inter-temporal constraints
involved. An extensive body of research has gone into im-
proved solutions for the deterministic UC problem [11]. More
recently, triggered by the influx of renewable energy, stochastic
UC formulations have also received extensive attention in the
research domain [12].

To increase the computational performance and accuracy
of PCM simulations, we focus on solving the deterministic
UC problem more efficiently by decomposing it into smaller
time periods. The method, called temporal decomposition,
is obtained by the Lagrangian relaxation of time-coupling
constraints such as ramping capacities and minimum up/down
time limits in the long-term UC problem. The key challenge
with this decomposition approach is to solve several mixed-
integer programming (MIP) problems while effectively search-
ing for dual variables in order to accelerate the convergence
of the algorithm. We develop a branch-and-bound method
based on temporal decomposition that can solve multiple sub-
problems in parallel on high-performance computing (HPC)
clusters. The method guarantees an optimal solution for the
long-term UC problem.

The Lagrangian relaxation was first applied in [13] and
has been an effective approach to UC problems in different

forms for more than two decades (e.g., [7], [14], [15]). In
particular, a Lagrangian relaxation, similar to our temporal
decomposition, has been applied in [7], where a long-term
UC problem is decomposed into shorter-term UC problems
by relaxing the time-coupling constraints for fuel and emis-
sion limits. However, the other coupling constraints, such as
the ramping and minimum up/down time constraints, were
ignored. Consequently, the decomposition approach in [7]
provides only suboptimal solutions with unknown gaps.

A key task for an efficient Lagrangian relaxation method is
finding good Lagrangian multipliers. Different methods have
been developed for solving Lagrangian dual problems (e.g.,
[16]). We use a proximal bundle method in order to find the
best Lagrangian dual bound. The proximal bundle method
is a variant of the bundle method that outer-approximates
the Lagrangian dual function by adding a set of linearly
inequalities, with a proximal term in the objective function.
Each iteration of the proximal bundle method either finds
new dual multipliers for the subproblems or certifies the best
Lagrangian dual bound.

However, such a Lagrangian relaxation method, also called
dual decomposition (DD), suffers from the lack of primal
solution characterization and the inability to recover primal
feasible solutions. To overcome issues, we additionally solve
the dual of the Lagrangian dual problem for given linear
inequalities generated from the DD. Note that this can be
seen as Dantzig-Wolfe decomposition with column generation
[17]. This provides the primal characterization of solutions
that can be used to guarantee integer feasibility by a branching
procedure in the branch-and-bound method.

The contributions of this paper are summarized as follows.

1) Developing a novel parallel temporal decomposition
based on the combination of branch-and-bound with
Lagrangian relaxation of the time-coupling constraints
to generate optimal solutions of the UC problem.

2) Implementing the parallel temporal decomposition (i.e.,
the combination of branch-and-bound with Lagrangian
relaxation) in an open-source software package DSP,
which enables effective computation on either desktop
computer or HPC cluster.

3) Providing computational results on two test systems,
indicating potential for substantial reductions in solution
time.

We note that the proposed decomposition scheme has potential
applications in market and system operations, not only in PCM
planning studies.

The rest of the paper is organized as follows. In Section II
we present a MIP formulation for the UC problem considered
in this paper. Section III presents the temporal decomposition
that decouples the UC problem into shorter-time subproblems.
We also present the dual and Dantzig-Wolfe decompositions
of the problem, followed by the branch-and-price method
based on the decomposition schemes. In Section IV we show
computational results from the temporal decomposition for
solving the long-term UC problem on the IEEE 118-bus and
PEGASE 1354-bus test systems. The conclusions of this paper
are discussed in Section V.
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II. UNIT COMMITMENT MODEL FOR PRODUCTION COST
MODEL

In this section we present a UC model formulation that is
solved in a PCM simulation for an extended time horizon. The
UC model is formulated as a MIP problem [18] (also see [19]
for major UC formulations),

min
∑
g∈G

∑
t∈T

(
Kgugt + Sgvgt +

∑
k∈K

Cgksgkt

)
(1a)

s.t.
∑
l∈L+

n

flt −
∑
l∈L−

n

flt +
∑
g∈Gn

pgt = Dnt, n ∈ N , t ∈ T ,

(1b)
flt = Bl (θnt − θmt) , l = (m,n) ∈ L, t ∈ T , (1c)

pgt =
∑
k∈K

sgkt, g ∈ G, t ∈ T , (1d)

r−gt ≤ pgt ≤ r+gt, g ∈ G, t ∈ T , (1e)

r+gt ≤ Pmaxg ugt, g ∈ G, t ∈ T , (1f)

r−gt ≥ Pming ugt, g ∈ G, t ∈ T , (1g)∑
g∈G

r+gt ≥ (1 + γ+)
∑
n∈N

Dnt, t ∈ T , (1h)∑
g∈G

r−gt ≤ (1− γ−)
∑
n∈N

Dnt, t ∈ T , (1i)

r+gt − pg,t−1 ≤ R+
g ug,t−1 + Pmaxg vgt, g ∈ G, t ≥ 2,

(1j)

r−gt − pg,t−1 ≥ −R−g ug,t−1 − Pming vgt, g ∈ G, t ≥ 2,
(1k)

t∑
q=max{1,t−UTg+1}

vgq ≤ ugt, g ∈ G, t ∈ T , (1l)

t∑
q=max{1,t−DTg+1}

wgq ≤ 1− ugt, g ∈ G, t ∈ T , (1m)

vgt − wgt = ugt − ug,t−1, g ∈ G, t ≥ 2, (1n)
− Fl ≤ flt ≤ Fl, l ∈ L, t ∈ T , (1o)

Θmin
n ≤ θnt ≤ Θmax

n , n ∈ N , t ∈ T , (1p)
ugt, vgt, wgt ∈ {0, 1}, g ∈ G, t ∈ T . (1q)

The objective function (1a) of the problem is to minimize
the sum of the commitment cost, the startup cost, and the
generation cost. Constraint (1b) ensures the flow balance for
each bus n ∈ N and time t ∈ T . Constraint (1c) represents
a linearized power flow equation based on Kirchhoff’s law,
modeling electricity transmission. Constraint (1d) splits power
generation into price blocks k ∈ K. Relations between reserve
up/down and power generation are described by constraints
(1e) – (1g); constraints (1f) and (1g) also represent on/off of
each generator g at time t with specified generation capaci-
ties. Constraints (1h) and (1i) represent the spinning reserve
requirements as a fraction of the total system load for each
time period t. Constraints (1l) and (1m) ensure the minimum
up- and downtime, respectively, for each generator. Equation
(1n) describes the logic between commitment, startup, and
shutdown decisions. Equations (1o) and (1p) are the bound
constraints for transmission line capacity and phase angle,

respectively. Commitment, startup, and shutdown decision
values are restricted to binaries by (1q). Note that more
constraints can be added to the model (1), such as fuel and
emission limits [7].

In practice, a PCM simulation oftentimes solves a set of
UC models (1) on a rolling horizon basis with an overlapping
period , e.g. solving the UC problem for two days, but keeping
the solution for the first day only, and then move on to the
next day. Constraints (1j) – (1n) couple multiple time periods.
The results from the previous optimization problem determine
the initial conditions (e.g., generator status, generation, and
reserve amount) for the coupling constraints for the next
planning period. In order to implement parallel PCM simula-
tions, the rolling horizon approach can be replaced by solving
many optimization problems for separate planning periods in
parallel [5]. In this study, overlap periods ranging from 0 to
5 days at the beginning of the period were used to address
the coupling constraints over time, resulting in individual
optimization problems up to 168 hours. In particular, it was
found that using a longer overlap period provide more accurate
simulation solutions for PCM [5].

III. TEMPORAL DECOMPOSITION OF UC PROBLEM

While solving a longer-term UC problem (1) is important
for accurate PCM simulation, solving a sequence of UC prob-
lems poses a significant computational challenge in PCM sim-
ulation. We present a decomposition approach that accelerates
the UC solution time by decoupling problem (1) into a number
of subproblems with smaller time horizons. The decomposition
can be obtained by relaxing the coupling constraints (1j) –
(1n). We also highlight that our decomposition approach is
different from the time domain decomposition [5], which does
not guarantee consistent solutions across subhorizons, whereas
our approach guarantees an optimal solution for the long-term
UC problem. We first define the set of subhorizon indices J ,

1) Tj ⊂ T for j ∈ J ,
2) ∪j∈J Tj = T , and
3) Ti ∩ Tj = ∅ for i 6= j ∈ J ,

where Tj is a subset of time horizon such that the indices
for time periods are consecutive. Using the set J , we rewrite
the problem (1) to the following equivalent form with a set
of coupling constraints and the others. We also define vectors
uj ,vj ,wj ,pj , rj , and sj , where the elements are respectively
ugt, vgt, wgt, pgt, rgt, and sgt for g ∈ G, t ∈ Tj .

min
∑
j∈J

∑
g∈G

∑
t∈Tj

(
Kgugt + Sgvgt +

∑
k∈K

Cgksgkt

)
(2a)

s.t. r+gt − pg,t−1 ≤ R+
g ug,t−1 + Pmaxg vgt,

g ∈ G, t ∈ Tj , t− 1 /∈ Tj , j ∈ J , (2b)

r−gt − pg,t−1 ≥ −R−g ug,t−1 − Pming vgt,

g ∈ G, t ∈ Tj , t− 1 /∈ Tj , j ∈ J , (2c)
t∑

q=max{1,t−UTg+1}

vgq ≤ ugt,

g ∈ G, t ∈ Tj , t− UTg + 1 /∈ Tj , j ∈ J , (2d)
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t∑
q=max{1,t−DTg+1}

wgq ≤ 1− ugt,

g ∈ G, t ∈ Tj , t−DTg + 1 /∈ Tj , j ∈ J , (2e)
vgt − wgt = ugt − ug,t−1,

g ∈ G, t ∈ Tj , t− 1 /∈ Tj , j ∈ J , (2f)
(uj ,vj ,wj ,pj , rj , sj) ∈ Xj , j ∈ J . (2g)

Here constraints (2b)–(2f) couple two consecutive subhori-
zons, and Xj is the set of feasible solutions defined by all
the noncoupling constraints for subhorizon j; that is,∑
l∈L+

n

flt −
∑
l∈L−

n

flt +
∑
g∈Gn

pgt = Dnt, n ∈ N , t ∈ Tj ,

flt = Bl (θnt − θmt) , l = (m,n) ∈ L, t ∈ Tj ,

pgt =
∑
k∈K

sgkt, g ∈ G, t ∈ Tj ,

r−gt ≤ pgt ≤ r+gt, g ∈ G, t ∈ Tj ,
r+gt ≤ Pmaxg ugt, g ∈ G, t ∈ Tj ,
r−gt ≥ Pming ugt, g ∈ G, t ∈ Tj ,∑
g∈G

r+gt ≥ (1 + γ+)
∑
n∈N

Dnt, t ∈ Tj ,∑
g∈G

r−gt ≤ (1− γ−)
∑
n∈N

Dnt, t ∈ Tj ,

r+gt − pg,t−1 ≤ R+
g ug,t−1 + Pmaxg vgt, g ∈ G, (t− 1), t ∈ Tj ,

r−gt − pg,t−1 ≥ −R−g ug,t−1 − Pming vgt, g ∈ G, (t− 1), t ∈ Tj ,
t∑

q=max{min{Tj},t−UTg+1}

vgq ≤ ugt, g ∈ G, t ∈ Tj ,

t∑
q=max{min{Tj},t−DTg+1}

wgq ≤ 1− ugt, g ∈ G, t ∈ Tj ,

vgt − wgt = ugt − ug,t−1, g ∈ G, (t− 1), t ∈ Tj ,
− Fl ≤ flt ≤ Fl, l ∈ L, t ∈ Tj ,
Θmin
n ≤ θnt ≤ Θmax

n , n ∈ N , t ∈ Tj ,
ugt, vgt, wgt ∈ {0, 1}, g ∈ G, t ∈ Tj .

Before deriving the decomposition framework, we fur-
ther simplify the formulation of problem (2). We define
the decision variable vectors xj such that xj concatenate
(ut, vt, wt, pt, rt, st) for t ∈ Tj . In particular, xj represents
the decision variables for subhorizon j. Problem (2) can be
written as

z := min
∑
j∈J

cjxj (3a)

s.t.
∑
j∈J

Ajxj ≥ b, (3b)

xj ∈ Xj , j ∈ J , (3c)

where the objective coefficient vectors cj are defined to
represent (2a), and constraint (3b) represents constraints (2b)–
(2f) that couple the subhorizons.

We present the flowchart of the temporal decomposition
method in Figure 1, where each of the main elements is de-
scribed in the following sections. The temporal decomposition

Fig. 1. Flowchart of the Temporal Decomposition Method.

is based on dual decomposition (DD) III-A and Dantzig-Wolfe
decomposition (DWD) III-B for finding lower bounds, whereas
primal solutions are found using a branch-and-bound (BB)
method III-C. The flowchart starts by initializing a root node
of the BB tree. The right-hand side of the chart represents the
lower bounding procedure by the DD and DWD. The lower
left part represents the BB procedure.

A. Lower Bounding from Dual Decomposition

We present the Lagrangian dual of problem (3) resulting
from the Lagrangian relaxation of constraint (3b). We define
the Lagrangian dual function as

L(λ) := bλ+
∑
j∈J

Dj(λ), (4)

where λ is the dual variable corresponding to constraint (3b)
and Dj(λ) is defined as

Dj(λ) := min
xj∈conv(Xj)

(
cj − λTAj

)
xj . (5)

The Lagrangian dual bound is obtained by solving

zLD := max
λ≥0
L(λ). (6)

Note that z ≥ zLD ≥ zLP , where zLP is the optimal objective
value of the linear relaxation of problem (3). Problem (6) can
be solved by a number of algorithms, such as the subgradient
method and bundle method (see [10] and references therein).

We use a proximal bundle method (e.g., [20]) that outer-
approximates the Lagrangian dual function L(λ) by adding
linear inequalities with a regularization term of `2-norm in
the objective function. A set of linear inequalities is added at
each iteration k. Let κ be the index for current iteration. After
adding κ sets of linear inequalities, the dual master problem
(DMP) of the proximal bundle method is given by

max
∑
j∈J

µj + bλ+
1

2τ
‖λ− λ̂‖22 (7a)

s.t. µj ≤ Dj(λ
k) + (Ajx

k
j )T (λ− λk),

j ∈ J , k = 1, . . . , κ, (7b)
λ ≥ 0, (7c)
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where τ is a positive constant and λ̂ is the proximal center.
Constraints (7b) are the linear inequalities that construct the
outer-approximation of L(λ).

Algorithm 1 Dual Decomposition

Require: Initialize cj ,Aj ,Xj ,b, τ > 0, λ̂ ≥ 0, and ε ≥ 0.
Set λ1 ← λ̂, κ← 1, and zLB ← −∞.

1: loop
2: Solve (5) for given λκ and for each j ∈ J .
3: Stop if L(λκ)− zLB < ε
4: Update the best bound zLB , the proximal center λ̂, and

weight τ .
5: Find an optimal solution (λκ+1, µκ+1

j ) of (7).
6: Set κ← κ+ 1.
7: end loop
8: return zLB and xkj for j ∈ J and k = 1, . . . , κ.

We summarize the algorithmic steps of the proximal bundle
method in Algorithm 1. The algorithm is initialized with
problem data and parameters. Solving subproblems (5) at line
2 finds a new dual bound and generates linear inequalities (7b)
for given λκ. To update zLB , λ̂, and τ at line 4, we follow Al-
gorithm 2.1 and Procedure 2.2 in [20]. We solve the DMP (7)
by adding the linear inequalities with the proximal parameters
λ̂ and τ . We repeat the steps 2 – 6 until the stopping criterion
in line 3 is satisfied. Note that zLD ≥ L(λk) ≥ L(λk−1) for
k = 2, . . . , κ. The convergence of the algorithm depends on
step 4 and is proved in [20].

B. Dantzig-Wolfe Decomposition

While effectively finding a tight dual bound zLD of z, the
DD does not find a primal bound of the problem (i.e., a
primal feasible solution). In production cost modeling, finding
a primal optimal solution is necessary for analyzing the electric
grid system. DWD is a primal-dual pair of the DD, which
constructs an inner-estimate of the convex hull of Xj (denoted
by conv(Xj)) for j ∈ J . We apply the decomposition to
problem (3) by considering constraint (3b) only and estimating
(3c). In particular, we define the restricted master problem
(RMP) that considers constraint (3b) only for a limited number
of solutions xj ∈ conv(Xj) for each j ∈ J . Then, we use
xkj from the pricing problem of the DD. Therefore, for given
xkj , j ∈ J , k = 1, . . . , κ, the RMP is given by

zDW := min
∑
j∈J

κ∑
k=1

cjx
k
jα

k
j (8a)

s.t.
∑
j∈J

κ∑
k=1

Ajx
k
jα

k
j ≥ b, (8b)

κ∑
k=1

αkj = 1, j ∈ J , (8c)

αkj ≥ 0, j ∈ J , k = 1, . . . , κ. (8d)

Note that the feasible solutions to problem (3) are approx-
imated by the convex combination of xkj ∈ conv(Xj). The
original variable solution is obtained by xj =

∑κ
k=1 x

k
jα

k
j

for j ∈ J . In addition, the RMP is a linear programming
problem. Let λ and µj be the dual variables corresponding to
constraints (8b) and (8c), respectively.

C. Branch-and-Bound Method
Recall that some of the elements in the original variable

vector xj =
∑κ
k=1 x

k
jα

k
j are restricted to being binaries.

However, RMP does not necessarily find a binary feasible
solution of the original problem (3). We apply the BB method
for ensuring a binary feasible solution by the branching
procedure. Let α̂kj be an optimal solution of RMP. For given
fractional value of

∑κ
k=1 x

k
j α̂

k
j at a node of the BB tree, the

branching procedure creates two child nodes by adding the
branching hyperplanes

κ∑
k=1

xkjα
k
j ≤ b

κ∑
k=1

xkj α̂
k
j c and

κ∑
k=1

xkjα
k
j ≥ d

κ∑
k=1

xkj α̂
k
j e (9)

to each of the child nodes, respectively. Note that adding a
branching hyperplane is equivalent to branching on a fractional
variable xj of the original problem (3). Then, the BNP method
chooses a new node from the BNP tree and solves the node
problem by using Algorithm 1.

Algorithm 2 Branch-and-Bound Method
Require: Initialize the problem data cj ,Aj ,Xj ,b, upper

bound zUB ←∞, and TREE← ∅.
1: Create a root node (Node0) for given cj ,Aj ,Xj ,b, and

TREE← TREE ∪ {Node0}.
2: repeat
3: Choose a node Node ∈ TREE.
4: Update TREE← TREE\{Node}
5: Call Algorithm 1 for solving the DMP of Node, which

returns zLB and xkj .
6: Solve the RMP of Node that finds α̂kj for given xkj .
7: if

∑κ
k=1 x

k
j α̂

k
j is fractional then

8: Choose an original variable to branch.
9: Create two nodes (NodeL and NodeR) by adding each

of (9) corresponding to the branching variable.
10: Update TREE← TREE ∪ {NodeL, NodeR}.
11: else
12: Update zUB ← min{zUB , zLB}.
13: end if
14: until TREE = ∅

We also summarize the algorithmic steps of the BB method
in Algorithm 2. In the initialization step of the algorithm, the
BNP tree is initialized as an empty set TREE of nodes (line
1). Any Node ∈ TREE represents the problem data for the
nodes that are not solved in the algorithm. The root node that
represents the initial problem of the algorithm is created in
line 2. The algorithm repeats lines 3 – 13 until no node exists
in TREE. A node is chosen and removed from TREE in lines 3
and 4, respectively. For any node chosen in line 3, Algorithm 2
solves the DMP and RMP of the node in lines 5 and 6. In
line 9, adding the branching hyperplanes (9) to each of the
nodes is equivalent to updating the problem data Aj and b.
The BNP algorithm terminates with z = zUB and returns the
corresponding primal solution xj =

∑κ
k=1 x

k
j α̂

k
j for j ∈ J .
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Fig. 2. Load profile used for the IEEE 118-bus system.

IV. COMPUTATIONAL RESULTS

We present computational results for using the temporal
decomposition method on test problems. We have imple-
mented the temporal decomposition method in an open-source
decomposition solver DSP [10], which can run on high-
performance computing clusters in parallel via the MPI library.
In addition, we have integrated a branch-and-bound (BB)
method on top of the temporal decomposition method, which
allows us to find an optimal solution to the original problem
(1), as compared with finding lower bounds only. For the
BB method (Algorithm 2), we have utilized an open-source
software package Coin-ALPS [21] that implements a generic
tree search framework. DSP uses a commercial optimization
solver CPLEX (version 12.7) for solving the mixed-integer
programming subproblems (5) of the temporal decomposition.
We have modeled the problem (1) and its decomposition in
the Julia script language, which can be read by DSP. All
the computations were run on Blues, a 630-node computing
cluster at Argonne National Laboratory. The Blues cluster has
a QLogic QDR InfiniBand network, and each node has two
octo-core 2.6 GHz Xeon processors and 64 GB of RAM. Note,
however, that our implementation can also run on a laptop or
workstation.

A. IEEE 118-Bus System

We use the IEEE 118-bus system with 118 buses, 54
generators, and 186 transmission lines. The system has a total
generation capacity of 5,450 MW. The system is required to
reserve 10% and 5% of the system load as spinning up/down
reserves for the ability to increase and decrease the generation,
respectively (i.e., γ+ = 0.1 and γ− = 0.05). We also consider
three blocks of generation cost (i.e., |K| = 3). Figure 2 shows
the fluctuation of the system load profile used in our study.
We use seven days of the load profile with 1-hour intervals. In
particular, we use the estimated hourly load of the PJM system
[22] for the dates from April 8 to April 14, 2016, which is
scaled down to 10% to obtain the load profile used in our
computational study. The load is 2,775 MW on average, with
a peak of 3,182 MW.

1) Extensive Form Solutions: Table I presents the size of
the problem instances for 24-, 48-, 72-, 96-, 120-, 144-, and

TABLE I
SIZES OF IEEE 118-BUS SYSTEM PROBLEM INSTANCES

T # Constraints # Variables # Binary
24 19765 18960 1296
48 40070 37920 2592
72 60398 56880 3888
96 80726 75840 5184

120 101054 94800 6480
144 121382 113760 7776
168 141710 132720 9072

TABLE II
NUMERICAL RESULTS FOR PROBLEM INSTANCES USING CPLEX-12.7 IN

PARALLEL WITH 16 COMPUTING CORES

T Best Objective Gap (%) Time (sec.)
24 1077030.3 0 6
48 2171642.3 0 68
72 3122813.6 0 1351
96 4174770.7 < 0.01 14400
120 5158594.4 < 0.01 14400
144 6152020.7 0.01 14400
168 7122822.5 0.02 14400

168-hour horizons. Recall that the 168-horizon UC problem
represents the 24-hour operation horizon with 6 days of
overlap (lookahead) for the PCM simulation. The UC problem
is solved up to a week ahead in their operational decision
processes to account for generating units with very long startup
times [23]. Table II summarizes the numerical results for each
problem instance solved by CPLEX in parallel on a 16-core
single node of the Blues cluster. We set a zero optimality gap
tolerance and a 4-hour wall clock time limit. The smallest
objective function values of all feasible solutions found are
reported in “Best Objective” with the relative gap (“Gap”)
between the best objective value and the best lower bound.
Within the time limit, optimal objective values were found for
24-, 48-, and 72-hour problem instances. For the other problem
instances, CPLEX found solutions with gaps. In particular,
the optimality gap increases as the problem size increases,
as shown in Table II.

2) Temporal Decomposition Solutions: We now present
the numerical results from the temporal decomposition. We
tested the decomposition method with different numbers of
subhorizons (i.e., |J | = 2, 4, 8, 12, 24). We used the weight
parameter τ = 1000, the initial dual variable values of zero
for λ̂, and the stopping tolerance ε = 10−6 in Algorithm 1.
Table III provides insights into the inner working of the
decomposition algorithm by showing the size of the coupling
problem (2) that results for different optimization periods and
subhorizons. The percentages of the coupling constraints and
variables to the total numbers are also reported in the table.
The number of constraints, all variables, and binary variables
increases with the number of decompositions. However, we
highlight that the temporal decomposition generates columns
iteratively up to the number of coupling variables reported
in Table III. Therefore, the size of the master problem is far
smaller than the size of the coupling problem.

In Figure 3 and Table IV, we report numerical results from
the temporal decomposition method with different numbers of
subintervals for 24-, 48- ,72-, 96-, 120-, 144-, and 168-horizon
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TABLE III
NUMBER OF COUPLING CONSTRAINTS, ALL VARIABLES, AND BINARY

VARIABLES. PERCENTAGES OF THE TOTAL NUMBERS OF ORIGINAL
CONSTRAINTS, VARIABLES, AND BINARY VARIABLES (REPORTED IN

PARENTHESES).

T |J | Constraints All variables Binary variables
24 2 594 (3%) 3456 (18%) 702 (54%)

4 1506 4104 1026
8 2548 4914 1188

12 3300 5616 1242
24 5428 (27%) 7614 (40%) 1296 (100%)

48 2 617 (1%) 6588 (17%) 1350 (52%)
4 1782 7668 1998
8 3514 8640 2322

12 4510 9396 2430
24 6900 (17%) 11448 (30%) 2538 (97%)

72 2 629 (1%) 8532 (15%) 1998 (51%)
4 1818 11232 2970
8 4032 12366 3456

12 5522 13176 3618
24 8372 (13%) 15282 (26%) 3780 (97%)

96 2 640 (0.7%) 10314 (13%) 2592 (50%)
4 1851 14688 3942
8 4158 16092 4590

12 6182 16956 4806
24 9430 (11%) 19116 (25%) 5022 (96%)

120 2 640 (0.6%) 10314 (10%) 2592 (40%)
4 1869 17604 4914
8 4200 19818 5724

12 6424 20736 5994
24 10488 (10%) 22950 (24%) 6264 (96%)

144 2 640 (0.5%) 10314 (9%) 2592 (33%)
4 1887 20520 5886
8 4242 23544 6858

12 6534 24516 7182
24 11546 (9%) 26784 (20%) 7506 (96%)

168 2 640 (0.4%) 10314 (7%) 2592 (28%)
4 1905 23436 6858
8 4284 27270 7992

12 6578 28296 8370
24 12604 (8%) 30618 (23%) 8748 (96%)
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Fig. 3. Solution times resulting from the temporal decompositions for
different numbers of time periods.

UC problems. The temporal decomposition (Algorithm 2)
solves the MIP pricing subproblem (5) for each j ∈ J in
parallel. Each subproblem is solved on a single node with
16 cores. For example, the problem of |J | = 24 solves 24
subproblems on 24 computing nodes with 384 (=24*16) cores.
The quadratic programming master problem is also solved in
parallel by CPLEX on a single node with 16 cores. We also
set 4-hour total time limit for these runs.

Figure 3 plots the solution times resulting from CPLEX
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Fig. 4. Progress on the lower and upper bounds for solving the 168-hour
unit commitment problem of the IEEE 118-bus system by CPLEX and the
temporal decomposition TD(24).

and the temporal decomposition method with different num-
bers of subintervals. The x-axis presents the time horizon
of the UC problem. “TD(n)” plots the solution time from
the temporal decomposition of n subintervals for n =
2, 4, 8, 12, 24. The temporal decomposition method found
optimal solutions for all the problem instances (i.e., T =
24, 48, 72, 96, 120, 144, 168) within the time limit, except for
the case where n = 2, which did not solve to optimality for
time horizons longer than 72 hours, and for n = 4, which
did not solve to optimality for time horizon of 120 hours. In
particular, the 96-hour horizon problem was solved to optimal-
ity after 1166 seconds when decomposed into 24 subhorizons.
Therefore, for this problem instance, since CPLEX could not
find an optimal solution in 4 hours (14400sec), the solution
time was reduced by at least a factor of 12 by using temporal
decomposition.

In Figure 4, we present how the lower and upper bounds
progress in CPLEX and the temporal decomposition method.
CPLEX found lower and upper bound early in the solution
progress. In particular, CPLEX is able to find a good upper
bound (i.e., a primal feasible solution) by running a number
of heuristic algorithms, whereas steadily improving the lower
bounds by the BB method. In contrast, the temporal decom-
position found a good lower bound by the DD and primal
feasible solutions later than the BB method, but it closes the
gap and finds the optimal solution much faster.

Detailed numerical results are reported in Table IV. The
columns for “Root Node” present the results observed at the
root node before starting the BB method. The column “Itera-
tions” reports the number of iterations taken in Algorithm 1.
The best lower bound of z are reported in the column “Best
Bound” with the relative gap as the relative difference between
the best bound and the best objective found by CPLEX as
reported in Table II. For the BB results in Table IV, “Nodes”
reports the number of BB nodes solved. “Best Objective”
reports the objective value of the primal solution. Note that
the temporal decomposition found the optimal solutions and
the best objective values for all the problem instances, as
opposed to CPLEX which could not solve to full optimality
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TABLE IV
NUMERICAL RESULTS FROM TEMPORAL DECOMPOSITION WITH DIFFERENT NUMBER OF SUB-HORIZONS.

Root Node Branch-and-Bound
T |J | Iterations Best Bound Gap (%) Time (sec.) Nodes Best Bound Best Objective Gap (%) Time (sec.)
24 2 17 1077030.3 0 908 1 1077030.3 1077030.3 0 908

4 54 1077030.3 0 137 1 1077030.3 1077030.3 0 137
8 92 1077023.6 < 0.01 103 5 1077030.3 1077030.3 0 118
12 120 1077030.3 0 148 13 1077030.3 1077030.3 0 195
24 140 1077023.0 < 0.01 237 13 1077030.3 1077030.3 0 342

48 2 49 2171629.6 < 0.01 2092 11 2171642.3 2171642.3 0 3187
4 71 2171623.1 < 0.01 2526 3 2171642.3 2171642.3 0 2559
8 90 2171620.9 < 0.01 435 5 2171642.3 2171642.3 0 520
12 105 2171622.2 < 0.01 176 13 2171642.3 2171642.3 0 237
24 129 2171635.1 < 0.01 237 35 2171642.3 2171642.3 0 470

72 2 32 3122813.6 0 1941 1 3122813.6 3122813.6 0 1807
4 37 3122800.0 < 0.01 858 11 3122813.6 3122813.6 0 815
8 65 3122792.5 < 0.01 1289 11 3122813.6 3122813.6 0 1868
12 87 3122810.3 < 0.01 436 19 3122813.6 3122813.6 0 498
24 129 3122806.5 < 0.01 299 15 3122813.6 3122813.6 0 526

96 2 48 4174726.5 < 0.01 14400 0 4174726.5 NA < 0.01 14400
4 47 4174746.5 < 0.01 3803 19 4174770.7 4174770.7 0 10730
8 84 4174763.3 < 0.01 4247 35 4174770.7 4174770.7 0 6160
12 112 4174747.4 < 0.01 1473 33 4174770.7 4174770.7 0 2352
24 141 4174769.4 < 0.01 735 29 4174770.7 4174770.7 0 1166

120 2 48 5158553.5 < 0.01 14400 0 5158553.5 NA < 0.01 14400
4 55 5144130.4 0.28 14400 0 5144130.4 NA 0.28 14400
8 99 5158562.0 < 0.01 3148 5 5158594.4 5158594.4 0 4033
12 116 5158568.2 < 0.01 3355 15 5158594.4 5158594.4 0 4039
24 129 5158570.9 < 0.01 829 35 5158594.4 5158594.4 0 1565

144 2 47 6150192.3 0.03 14400 0 6150192.3 NA 0.03 14400
4 65 6151935.2 < 0.01 7108 3 6151974.0 6151974.0 0 7646
8 77 6151928.5 < 0.01 1967 15 6151974.0 6151974.0 0 3161
12 96 6151934.4 < 0.01 3560 19 6151974.0 6151974.0 0 4494
24 139 6151933.5 < 0.01 1057 7 6151974.0 6151974.0 0 1222

168 2 47 7119965.0 0.04 14400 0 7119965.0 NA 0.04 14400
4 57 7122821.1 < 0.01 10573 1 7122821.1 7122821.1 0 10753
8 98 7122771.9 < 0.01 3600 0 7122821.1 7122821.1 0 4329
12 108 7122773.7 < 0.01 2893 5 7122821.1 7122821.1 0 3145
24 151 7122793.8 < 0.01 2396 15 7122821.1 7122821.1 0 3327

for time horizons beyond 72 hours. We highlight that the best
bound found at the root node is very tight, with the gap
less than 0.01% for most problem instances, including zero
gaps for four of the instances. As a result, only a few of the
BB nodes were solved to find a primal solution and prove
optimality, as shown in the ”Nodes” column. Note, however,
that the computational performance depends on the choice of
the number of subhorizons and that the best objective values
were not found within the time limit (denoted by “NA”) when
the subproblems were large (e.g., the 96-horizon instance with
|J | = 2).

3) Differences in Unit Commitment Solutions: We highlight
that unit commitment decisions are considerably different,
when closing the 0.02% optimality gap for the 168-hour
planning instance. Figure 5 plots the commitment schedules
obtained by CPLEX and our temporal decomposition for the
168-hour time horizon instance. Specifically, the commitment
schedules are different in 9 of the 54 generating units (17%)
for 372 hours. Similar to Figure 5, we plot the absolute
difference in power generation for each generating unit over
the 168-hour horizon in Figure 6. The power generations are
different in 26 of the 54 generating units (48%) with the
maximum difference of 128.05 MWh and the total difference
of 12,721 MW for the 168-hour horizon of all units. These
results suggest that suboptimal schedules (even with small
optimality gap) can deviate significantly from an optimal

TABLE V
COMPUTATIONAL PERFORMANCE FROM A ROLLING HORIZON

SIMULATION FOR THE 168-HOUR UNIT COMMITMENT PROBLEM INSTANCE

T Objective Error (%) Time (sec.)
24 7632690.3 6.68 25
48 7433805.6 4.18 264
72 7260291.1 1.89 3587

schedule and generation profile, thus hindering high-fidelity
PCM simulations.

4) Rolling Horizon Solutions and Errors: A common ap-
proach in PCM is to use a rolling horizon to simulate the
operation of the power system over multiple days. We con-
clude this section by showing that a rolling horizon approach
produces substantial scheduling errors by implementing sub-
optimal solutions to the original planning horizon. Table V
reports the numerical results from using a rolling horizon
approach that simulates the 168-hour unit commitment model
with 24-, 48-, and 72-hour time windows. For example with
the 24-hour time window, we solve the first 24 hours of
the 168-hour horizon and fix the optimal solution for the
first 24-hour time window. The optimal solution is used as
the initial condition (e.g., number of hours generators are
on/off, generation dispatch schedules) for the next 24-hour
time window. Likewise, with the 48-hour window the model
is also solved daily, only considering the results from the first
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Fig. 5. Unit commitment solutions found for the 168-hour unit commitment problem instance by CPLEX and the temporal decomposition TD(24). The
generators are scheduled online for the black-colored time periods with the gray highlights of differences.
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Fig. 6. Absolute difference in power generation found for the 168-hour unit commitment problem instance by CPLEX and the temporal decomposition
TD(24). Darker plot is used for larger differences in MWh.

24 hours in each of the 7 days. In Table V, “Objective” is the
sum of the optimal objective values for the time windows with
the rolling horizon approach. “Error” calculates the difference
between the “Objective” value and the optimal objective value
of the 168-hour horizon UC problem as found by the temporal
decomposition method (i.e., 7122821.1). Table V shows that a
smaller time window produces a larger gap, which emphasizes
the importance of using the optimal solution for a longer-
term horizon. In particular, the 72-hour time window solution
with the rolling horizon approaches produces an error that is
nearly 2% and is even slower than the temporal decomposition
solution for the full 168 hour period.

B. PEGASE 1354-Bus System
We consider a larger system from the Pan European Grid

Advanced Simulation and State Estimation (PEGASE) project,
with 1,354 buses, 260 generators of 128,738 MW total capac-
ity, and 1,991 transmission lines [24]. The load is 7,548 MW

on average, with a peak of 9,450 MW. As in the IEEE 118-
bus system case, we use 10% and 5% of the system load
as spinning up/down reserves, respectively and consider three
blocks of generation cost for each unit. Table VI presents the
number of constraints, variables, and binary variables for each
time horizon T . We highlight that the problem instances for the
PEGASE 1354-bus system are seven times larger than those
for the IEEE 118-bus system (in Table I).

Table VII shows the numerical results from CPLEX-12.7
solving the PEGASE 1354-bus problem instances with 24-,
48-, 72, 96-, 120-, 144-, and 168-hour horizons. The 24-, 48-,
72-, and 96-hour problem instances were solved to optimum
within the 4-hour time limit. The other larger instances found
“Best Objective” (i.e., upper bounds) with gaps.

We present the computational performance of the temporal
decomposition solving the problem instances in parallel. The
original time horizon was decomposed to 24 subhorizons for
each problem instance. The problem instances reported lower



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2816463, IEEE
Transactions on Power Systems

10

TABLE VI
SIZES OF PEGASE 1354-BUS SYSTEM PROBLEM INSTANCES

T # Constraints # Variables # Binary
24 142232 136440 6240
48 284984 272880 12480
72 427736 409320 18720
96 570488 545760 24960

120 713240 682200 31200
144 855992 818640 37440
168 998744 955080 43680

TABLE VII
NUMERICAL RESULTS FOR THE PEGASE 1354-BUS INSTANCES USING

CPLEX-12.7 IN PARALLEL WITH 16 COMPUTING CORES

T Best Objective Gap (%) Time (sec.)
24 746057.9 0 196
48 1715371.6 0 2049
72 2561916.1 0 5581
96 3470853.9 0 10968

120 4217676.0 0.08 14400
144 5169400.5 0.12 14400
168 6122984.8 0.18 14400

TABLE VIII
COMPUTATIONAL PERFORMANCE FOR SOLVING THE PEGASE 1354-BUS

INSTANCES USING THE TEMPORAL DECOMPOSITION TD(24)

Time (sec.)
T Iterations Best Bound Gap (%) Master Total
24 249 744651.4 0.18 14165 14400
48 160 1710995.5 0.25 14184 14400
72 240 2558455.4 0.13 12855 14400
96 127 3460915.7 0.28 13184 14400
120 243 4214335.0 0.07 10746 14400
144 215 5163879.0 0.10 9893 14400
168 211 6115157.5 0.12 8218 14400

bounds in “Best Bound” with gaps that calculate the relative
difference between the lower bounds and “Best Objective” in
Table VII. However, for all the problem instances, the temporal
decomposition terminated at root node solutions without any
branching step due to the time limit. More importantly, we
found that the master problem solutions become a significant
bottleneck of the temporal decomposition when solving a very
large-scale system with a larger number of coupling constraints
(e.g., 60,606 coupling constraints for the 168-hour problem
instance). For instance, for the 24-hour problem instance,
98% of the solution time was spent on solving the master
problem. Note that this challenge has already been identified
in the optimization community and addressed by developing
a parallelization of the master solution [25], [26], reporting
promising scalability results (e.g., 16 times speedup with 32
cores, as reported in [26]).

The temporal decomposition still provided substantially bet-
ter lower bounds than did CPLEX for the 120-, 144-, and 168-
hour problem instances (e.g., 0.12% vs. 0.18% for the 168-
hour instance in Table VII). Figure 7 shows the progress on
lower and upper bounds when solving the 168-hour problem
instance by CPLEX and the temporal decomposition. The
temporal decomposition found a good initial lower bound and
improved it over time. In particular, the lower bounds from
the temporal decomposition were always better than those
from CPLEX. However, no upper bound was found because
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Fig. 7. Progress on the lower and upper bounds for solving the 168-hour unit
commitment problem of the PEGASE 1354-bus system by CPLEX and the
temporal decomposition TD(24).

the temporal decomposition terminated during the root node
solution due to the 4-hour time limit.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel temporal decomposition method that
solves a long-term UC problem by splitting the long-term
problem into many shorter-term problems based on Lagrangian
relaxation, where the shorter-term problems are solved in
parallel. We highlight that our decomposition scheme can be
applied to other problems such as market and system opera-
tions. The computational results on the IEEE 118-bus system
showed that the parallel temporal decomposition reduces the
solution time by 92% for solving a 96-hour horizon UC
problem, which could not be solved to optimality by CPLEX
with the 4-hour time limit.

For the IEEE 118-bus system, we not only reported the opti-
mality gaps of the UC solutions but also found that suboptimal
generator schedules (even with small optimality gap) can de-
viate significantly from an optimal schedule. We also showed
that even optimal schedules can accumulate a large estimation
error, when smaller time windows are used in the rolling
horizon approach. Moreover, the rolling horizon approach was
not necessarily faster than the temporal decomposition applied
to the full planning horizon. The computational results on
the IEEE 118-bus system illustrate that the improvement in
solution quality and time can lead to higher fidelity PCM
simulations.

For the PEGASE 1354-bus system case, we have identified
that the master problem solution becomes a computational
bottleneck of the temporal decomposition method because
of the increasing number of generators and thus coupling
constraints. We are currently developing the parallelization
of the master solutions based on the ideas in [25], [26]
for mitigating the computational bottleneck in the master
solution. In particular, we are integrating the parallel interior
point solver [27] that implements parallel Schur complement
computation for the block-angular structure of the temporal
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decomposition master problem. We also plan to develop and
integrate primal methods (e.g., cutting planes and heuristics)
in the temporal decomposition, which would accelerate the
solution.
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decomposition in stochastic integer programming,” Operations Research
Letters, vol. 41, no. 3, pp. 252–258, 2013.

[26] B. Dandurand and K. Kim, “Scalable decomposition methods for
preventive security-constrained optimal power flow,” Argonne National
Laboratory, Tech. Rep. ANL/MCS-P9021-1117, 2017.

[27] C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner, “An augmented
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