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Abstract—This paper proposes a rigorous anomaly detection
scheme, developed to spot power system operational changes
which are inconsistent with the models used by operators. This
novel technique relies on a state observer, with guaranteed
estimation error convergence, suitable to be implemented in real
time, and it has been developed to fully address this important
issue in power systems. The proposed method is fitted to the
highly nonlinear characteristics of the network, with the states
of the nonlinear generator model being estimated by means
of a linear time-varying estimation scheme. Given the reliance
of the existing dynamic security assessment tools in industry
on nominal power system models, the suggested methodology
addresses cases when there is deviation from assumed system
dynamics, enhancing operators’ awareness of system operation.
It is based on a decision scheme relying on analytical computation
of thresholds, not involving empirical criteria which are likely to
introduce inaccurate outcomes. Since false-alarms are guaranteed
to be absent, the proposed technique turns out to be very useful
for system monitoring and control. The effectiveness of the
anomaly detection algorithm is shown through detailed realistic
case studies in two power system models.

Index Terms—Fault detection, observers, power system dynam-
ics, power system monitoring, synchronous generators

NOMENCLATURE

α Difference between rotor angle and HV bus voltage
phase in rad

ε̄ Vector of maximum state estimation errors
ν̄ Vector of maximum measured input noise values
ῡ Vector of maximum measurement noise values
n̄ Transformer off-nominal ratio
w̄ Vector of maximum process disturbance values
δ Rotor angle in rad
ε Vector of state estimation errors
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ν Column vector of measured input noise variables
ω, ωB Rotor speed in p.u. and its base value in rad/s
φIy Measured stator current phase
Φ Discrete-time form of system transition matrix
ψ1d Subtransient emf due to d-axis damper coil in p.u.
ψ2q Subtransient emf due to q-axis damper coil in p.u.
In Identity n×n matrix
θ HV bus voltage phase in rad
ũ Column vector of noisy inputs
υf Measurement noise associated with fsysy
υI Measurement noise associated with Iy
υφI

Measurement noise associated with φIy
υ, υ̃ Vectors of measurement noise variables
A,B Discrete-time state and input matrices
C,D Discrete-time output and feedforward input matrices
Dr Rotor damping constant in p.u.
E′d Transient emf due to flux in q-axis damper coil in p.u.
E′q Transient emf due to field flux linkages in p.u.
Efd Generator field excitation voltage in p.u.
f Discrete-time form of system state equations
fθ Rate of change of the HV bus voltage phase in p.u.
fυ Noise term of the measured value of fθ in p.u.
fy Measured value of fθ in p.u.
fsysy Measured system frequency, and its associated noise
G Observability Gramian matrix
h Discrete-time form of measurement output equations
I Stator current magnitude in p.u.
Iy Measured stator current magnitude
K Observer filtering matrix
k Simulation time step
KA Automatic voltage regulator gain
Kd1 Ratio (X ′′d −Xls) / (X ′d −Xls)
Kd2 Ratio (X ′d −X ′′d) / (X ′d −Xls)
Kq1 Ratio

(
X ′′q −Xls

)
/
(
X ′q −Xls

)
Kq2 Ratio

(
X ′q −X ′′q

)
/
(
X ′q −Xls

)
M Inertia constant in p.u.
Py, υP Measured active power value, and its associated noise
Qy, υQ Measured reactive power value, and its associated

noise
r, r̄ Vectors of residuals and thresholds
Rs Armature resistance in p.u.
RT Transformer winding resistance in p.u.
T ′d0 d-axis transient time constant
T ′q0 q-axis transient time constant
T0 Simulation time step
TA Automatic voltage regulator time constant
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Tm, Te Mechanical and electrical torque inputs in p.u.
T ′′d0 d-axis subtransient time constant in s
T ′′q0 q-axis subtransient time constant in s
V HV bus voltage magnitude in p.u.
Vυ Noise term of the measured value of V in p.u.
Vt Stator voltage magnitude in p.u.
Vy Measured value of V in p.u.
Vref Automatic voltage regulator reference constant in p.u.
w, w̃ Vectors of process disturbances
x, x̂ Vectors of system states and state estimates
X ′d, X

′
q d-axis and q-axis transient reactances in p.u.

Xd, Xq d-axis and q-axis synchronous reactances in p.u.
XT Transformer leakage reactance in p.u.
X ′′d , X

′′
q d-axis and q-axis subtransient reactances in p.u.

Xls Armature leakage reactance in p.u.
y, ŷ Vectors of measurements and output predictions
ZT Transformer series impedance in p.u.

I. INTRODUCTION

MODERN power networks are undergoing considerable
operational and structural modifications, resulting from

significant technology advances with respect to forms of elec-
tric power generation and communications infrastructure, let
alone the energy market liberalisation [1], [2]. Power system
complexity increases, given the current trends. Specifically,
advanced control systems associated with newly integrated
system components may give rise to unpredictable system
behaviour of nonlinear nature. Moreover, aging equipment,
given the longstanding power network operation, is prone to
failures, whereas, lack of investments in transmission systems
may lead to stressed system operation [2]. In this context, it is
widely recognised that wide area monitoring systems (WAMS)
contribute to operators’ knowledge of system’s operational
status, and dynamic state estimation (DSE) may prove to be
a very useful tool [3].

Real-time DSE is model based, thus, good knowledge of the
power system dynamic model is essential to obtain accurate re-
sults. In this context, given power networks’ high complexity,
methods detecting deviation from routine conditions or ‘nom-
inal’ models play a significant role in enhancing operators’
awareness of the system operation. Such anomaly detection
techniques have been reported in power systems literature,
engaging Kalman filter variants, and relying on thresholds, the
values of which are typically based on empirical criteria [4]–
[9]. In this respect, Kalman filter utilization requires knowl-
edge and assumptions regarding noise probability distributions
(e.g. Gaussianity), while divergence issues are likely to arise
when there is a high level of mismatch between the assumed
estimation system model and the real one [10].

On the other hand, observer-based anomaly detection tech-
niques constitute a significant class of methods identifying
deviations from nominal models, being popular in various
research areas [11]–[18]. Observers are developed based on the
principle of guaranteed estimation error convergence (whereas
Kalman filter based estimators primarily rely on the trace
minimization of the state error covariance) [19], [20]. There
have been several observer based research studies, involving

power system models requiring many assumptions and sim-
plifications [21], [22]; in cases where more advanced power
system models are utilized, they are linearised with respect
to one specific operating point, with the observer’s filtering
matrix term being optimized with reference to this particular
point [23]–[26], restricting the applicability of the observer
in a continuously changing environment like operation of a
power network.

To address these issues, the work conducted in [27] is
extended to consider nonlinear output equations, leading to
the development of a discrete-time observer, based on time-
varying linearisation with respect to the estimate at every time
step, in a similar approach as in Extended Kalman filtering
(EKF) [10]. The filtering term, guaranteeing the observer’s
convergence, changes at every time step, and its computation
is simple and suitable for real-time implementations. This
research effort leads to the following main contributions:
• to propose a novel observer in the context of realistic

power system models;
• to establish an observer-based anomaly detection tech-

nique for models with nonlinear output equations;
• to formulate a systematic approach for threshold calcula-

tion, guaranteeing the absence of false alarms, unlike the
case where empirical criteria are used.

The paper is organised as follows: In the next section, the
synchronous generator models dealt with in this research are
presented and thoroughly analysed. Section III includes the
analysis of the observer-based anomaly detection algorithm. In
Section IV, the proposed methodology is applied to two study
systems; the 9-bus, 3-machine system used in [28] and the
IEEE benchmark 68-bus, 16-machine system, corresponding
to the New England (NETS) and New York (NYPS) power
systems, along with three neighbouring areas [29]. Section V
gives some concluding remarks.

II. SYNCHRONOUS GENERATOR ESTIMATION MODELS

A. Model Development - State equations

Synchronous generator modelling is one of the basic re-
quirements of power system dynamic modelling. Depending
on the targets of each research and the amount of information
available about the modelling detail, various models have
been reported in literature [28], [30]. In the context of multi-
machine systems, decentralisation has gained popularity, since
it reduces the computational burden and enables the estimation
procedure to be conducted on a local basis [31]–[35]. The
decentralisation procedure relies on system partitioning (in
terms of the estimation calculations) and the use of measured
inputs, which are measurements on the ‘boundary’ of the as-
sumed subsystem [31], [32]. This partitioning based approach
is usually called ‘playback process’, which is also useful in
generator model validation procedures [36]. Here, the ‘bound-
ary’ is the high voltage (HV) side of the transformer connected
to the terminal bus of the respective generator (henceforth
termed as ‘HV bus’), to enable local anomaly detection based
on measurements at the bus which corresponds to this side
of the transformer, as in [36]. The assumed estimation model
boundary is depicted in Fig. 1. In several power system studies,
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Fig. 1. Estimation model boundary in the context of a multi-machine system

the noise component of the measured inputs has been taken
into account in the context of the analysis [32], [33], whereas,
in some other studies, these inputs are considered as noise-free
[34], [35], [37]. Furthermore, the consideration of different
measured inputs leads to different decentralised synchronous
generator models, with diverse models having been utilized
for this purpose [32]–[35], [37]. Two synchronous generator
models have been used in the context of the case studies
here, the transient and the subtransient models [28], [38],
[39]. Both models are valid for transient conditions, with the
subtransient being more detailed and capturing phenomena
taking place immediately after an event occurrence [30]. The
subtransient synchronous generator model used here, including
the respective transformer model elements, is described by the
following equations [28], [38]:

α̇ = ωB (ω − 1− fθ) , (1)

ω̇ =
1

M
[Tm − Te −Dr (ω − 1)] , (2)

Ė′q =
1

T ′d0

{
Efd − E′q − (Xd −X ′d) [−Id

− Kd2

X ′d −Xls

(
ψ1d − (X ′d −Xls) Id − E′q

)]}
,

(3)

Ė′d =
1

T ′q0

{
−E′d −

(
Xq −X ′q

)
[Iq

− Kq2

X ′q −Xls

(
−ψ2q +

(
X ′q −Xls

)
Iq − E′d

)]}
,

(4)

ψ̇2q =
1

T ′′q0

[
−ψ2q − E′d +

(
X ′q −Xls

)
Iq
]
, (5)

ψ̇1d =
1

T ′′d0

[
−ψ1d + E′q + (X ′d −Xls) Id

]
, (6)

Ėfd =
1

TA
[KA (Vref − Vt)− Efd] , (7)

and

Te = Kq1E
′
dId +Kd1E

′
qIq

+
(
X ′′d −X ′′q

)
IdIq +Kd2ψ1dIq −Kq2ψ2qId,

(8)[
Id
Iq

]
= Z−1gtr

[
Rs −X ′′q
X ′′d Rs

] [
Kq1E

′
d −Kq2ψ2q − n̄Vd

Kd1E
′
q +Kd2ψ1d − n̄Vq

]
, (9)

Zgtr = I2 + n̄2
[
Rs X ′′q
−X ′′d Rs

]−1 [
RT XT

−XT RT

]
, (10)[

Vtd
Vtq

]
= n̄2

[
RT XT

−XT RT

] [
Id
Iq

]
+ n̄

[
Vd
Vq

]
, (11)

Vt =
√
V 2
tq + V 2

td, (12)

Vq = V cosα, (13)

Vd = −V sinα, (14)

V = Vy − Vυ, (15)

fθ = fy − fυ. (16)

To obtain the discrete form of these equations, it can be
assumed that ẋ = (xk−xk−1)/T0, where T0 is the simulation
time step. This model is built based on the principle that d-
axis leads q-axis. Similarly to the analysis in [33], the internal
rotor angle (α) is used instead of the rotor angle (δ), since the
utilization of the latter relies on the multi-machine context,
requiring the knowledge of the global reference frame angle,
which is impossible when estimation is performed based on
local information and measurements only. Here, the phase
angles of all quantities are defined with respect to the HV bus
voltage phasor. With regard to this, the internal rotor angle
(α) replaces the rotor angle (δ) in this decentralised context,
as carried out in [33], defined as α = δ − θ, with Eq. (1)
characterizing its dynamics [33]. The rate of change of the
HV bus voltage phase is approximated by the equation below
(divided by ωB , to obtain the p.u. value) [28]:

fθk ≈
θk − θk−1
ωBT0

. (17)

Analogously to the procedure described in [33], the mea-
sured inputs used are the HV bus voltage magnitude (Vy) and
the rate of change of its phase (fy). Thus, in the context of
the synchronous generator subtransient model, the state vector
has the following form:

x =
[
α ω E′q E

′
d ψ2q ψ1d Efd

]>
. (18)

Also, the noisy input vector is:

ũ = [Tm Vref Vy fy]
>
, (19)

whereas:

u = [Tm Vref V fθ]
>
, (20)

ν = [0 0 Vυ fυ]
>
, (21)

where u, ν correspond to the noise-free and noise components
of the noisy input vector, respectively (i.e. ũ = u+ ν). It can
be noted that the first two elements of ν are equal to 0, since
Tm and Vref are considered to be perfectly known.

Further to the subtransient model, the transient model can
be obtained by considering X ′′q = X ′q and X ′′d = X ′d, meaning
that Kq1 = Kd1 = 1 and Kq2 = Kd2 = 0; therefore, in this
case, the state vector does not include ψ2q and ψ1d (Eqs. (5),
(6) are omitted).
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B. Output equations

This work considers a decentralized generator model, with
a Phasor Measurement Unit (PMU) at the HV side of the
transformer which comes after the generator terminal bus. The
current magnitude (Iy), its phase with reference to the HV
bus voltage phasor (φIy), the active power output (Py) and the
reactive power output (Qy) at the HV bus are the measurement
outputs. These are governed by the following equations:

Iy = n̄
√
I2q + I2d + υI , (22)

φIy = α+ arctan

(
Id
Iq

)
+ υφI

, (23)

Py = Kq1E
′
dId +Kd1E

′
qIq +

(
X ′′d −X ′′q

)
IdIq +Kd2ψ1dIq

−Kq2ψ2qId −
(
I2d + I2q

) (
Rs + n̄2RT

)
+ υP ,

(24)
Qy = Kq1E

′
dIq −Kq2ψ2qIq −

(
X ′′q + n̄2XT

)
I2q

−
(
X ′′d + n̄2XT

)
I2d −Kd1E

′
qId −Kd2ψ1dId + υQ,

(25)
where Iq , Id are given by Eq. (9), whereas υI , υφI

are
the measurement noise terms, associated with Iy and φIy,
respectively, Py and Qy are the active and reactive power,
respectively, measured at the HV substation of the transformer
of the corresponding generator, and υP , υQ are their associated
noise terms, respectively.

Frequency measurement (fsysy ) has also been considered,
since it is closely related to speed [40], and its p.u. value is:

fsysy = ω + υf , (26)

where υf is the associated measurement noise. Therefore, the
output measurement vector is:

y =
[
fsysy Iy φIy Py Qy

]>
. (27)

III. ANOMALY DETECTION METHODOLOGY

A. The anomaly detection logic

The proposed anomaly detection method is inspired by the
work conducted in [27], which has been significantly extended
to consider the nonlinear output equations. Eqs. (1)-(16) and
(22)-(26) constitute the nonlinear synchronous generator state
space model, which can be discretized and described by the
following general discrete-time model:

xk+1 = f (xk, uk) + w̃k,

yk = h (xk, uk) + υ̃k,
(28)

where f represents the discretized system state Eqs. (1)-
(16) at time step k, h corresponds to the discretized output
measurement Eqs. (22)-(26), w̃k is the process disturbance
vector accounting for modelling uncertainty, whereas υ̃k is
the output measurement noise vector.

In order for anomalies in the system to be detected, a model
based decision scheme is proposed. A prediction ŷk of the
output measurements yk is computed with reference to the
nominal model (Eq. (28)). The prediction error rk = yk−ŷk is
compared with a suitably defined threshold to decide whether
the current prediction error is just caused by the process and

the output disturbances or also by the additional influence
of an anomaly causing a significant discrepancy between the
measured output and the one predicted via the nominal model.

The following time-varying observer is defined to compute
the output prediction:

x̂k+1 = Akx̂k +Bkũk + b̃k +Kk(yk − ŷk),

ŷk = Ckx̂k +Dkũk + c̃k,

ũk = uk + νk,

(29)

with Ak, Bk, Ck, Dk, b̃k, c̃k defined as:

Ak =
∂f

∂xk

∣∣∣∣
x̂k

, Bk =
∂f

∂uk

∣∣∣∣
x̂k

, Ck =
∂h

∂xk

∣∣∣∣
x̂k

, Dk =
∂h

∂uk

∣∣∣∣
x̂k

b̃k = f(x̂k, ũk)−Akx̂k −Bkũk,

c̃k = h(x̂k, ũk)− Ckx̂k −Dkũk,

where x̂ is the state estimation, and K a matrix collecting
the time-varying observer parameters. Matrix Kk is computed
at each time step as in [41], guaranteeing the convergence of
the state estimation error εk = xk − x̂k (see the theoretical
analysis illustrated in the Appendix B).

The prediction error is compared component-by-component
with a suitably defined threshold (see Section III-C). If, for at
least one component, the residual crosses the corresponding
threshold, this designates an anomaly (i.e., the measurements
cannot be “explained” by the nominal dynamics). However,
before the threshold analysis is presented, the system model
(Eq. (28)) has to be formulated in an appropriate way with
respect to the aforementioned observer equations, as illustrated
in the following section.

B. Reformulation of the nominal model

From Eqs. (1)-(16) and (22)-(26), it is clear that the syn-
chronous generator’s state and output equations are nonlinear.
In order to allow dynamical analysis for the rigorous definition
of a suitable anomaly detection threshold, the model (Eq.
(28)) is reformulated as a linear time-varying model. For
this purpose, the discrete-time state and output equations are
linearised around the estimate at every time step (a similar
approach is described in [10]), to obtain the prediction for the
next time step. Thus, the previously presented synchronous
generator models are rewritten according to the following
discrete-time state space form:

xk+1 =Akxk +Bkuk + b̃k + wk,

yk =Ckxk +Dkuk + c̃k + υk,
(30)

where wk and υk also include the linearisation errors. In the
context of the analysis conducted here, the process disturbance
vector w lies within a range of values corresponding to
nominal operation, and, as far as the measured input and output
measurement noises (i.e. ν and υ, respectively) are concerned,
they are characterized by maximum errors, as specified by
standards, with which the measurement devices used have to
comply, and in this case the IEEE Standard C37.118.1-2011
for phasor measurement units (PMUs) [42]. This means that:

|wk| ≤ w̄, |νk| ≤ ν̄, |υk| ≤ ῡ. (31)
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If any of the above inequalities is violated, this denotes
deviation from nominal system operation and, thus, it is
considered as an anomaly.

C. The anomaly detection threshold

The anomaly detection threshold is designed in order to
act as an upper bound for the output estimation error in
the presence of disturbances. The threshold is analytically
designed so to guarantee the following: i) to always be an
upper bound for the residual; ii) absence of false-alarms; iii)
stability of the threshold. To derive a suitable threshold, the
output estimation error is analysed:

rk = yk − ŷk = Ckεk −Dkνk + υk. (32)

Thanks to the result in Proposition B.1 (see Appendix B)
guaranteeing the convergence of the estimator, and, from Eq.
(31) , the output estimation error (Eq. (32)) can be bounded at
each time step component-wise using the triangular inequality:

|rk| ≤ |Ck| |εk|+ |Dk| ν̄ + ῡ. (33)

The state estimation error εk = xk − x̂k is then analysed
(see Eq. (38) in Appendix B). It can be written as:

εk = Φk,0ε0 +
k−1∑
l=0

Φk,l+1d̃l, (34)

where Φk,0 is the transition matrix from time 0 to time k:

Φk,0 = Ãk−1Ãk−2 . . . Ã0,

with Ãk = Ak −KkCk and d̃l = −Blνl +wl −Kl(−Dlνl +
υl). Since the unforced system describing the dynamics of
the estimation error (Appendix B - Eq. (35)) is exponentially
asymptotically stable thanks to the result in Appendix B, in
[43] it is proved that there exist a > 0 and λ ∈ [0, 1] so that:

‖Φk,0‖ ≤ aλk.

Therefore, the state estimation error can be bounded by:

ε̄k = aλk ε̄0 +

k−2∑
l=0

aλk−l−1d̄l + d̄k−1, (35)

where ε̄0 is the initial estimation error bound, properly defined
thanks to the knowledge of the system, and d̄l = |Bl| ν̄+ w̄+
|Kl| (|Dl| ν̄+ῡ). As a consequence, we can define the anomaly
detection threshold for the residual signal r:

r̄k := |Ck| ε̄k + |Dk| ν̄ + ῡ. (36)

Thanks to the way it is designed, the following inequality is a
necessary condition for the ‘healthy’ status of the monitored
system: ∣∣∣r(i)k ∣∣∣ ≤ r̄(i)k , ∀i = 1, ..., 5. (37)

It is sufficient that at least one component of the residual
signal

∣∣r(i)∣∣ crosses the corresponding threshold r̄(i) for at
least one time-step to state that the monitored system cannot
be explained by the nominal dynamics (30), i.e., something
has changed in the dynamics of the system from its modelled
dynamics.

IV. CASE STUDIES

A. 9-Bus, 3-Machine System

The anomaly detection methodology has been applied to a
9-bus, 3-machine power system model, the details of which
can be found in [28], and it is shown in Fig. 2. In this model,
all synchronous machines are designed using their transient
models, as previously presented, whereas, fast static exciters
have been used for all the machines, described by Eq. (7),
as opposed to the DC excitation systems which are utilized
in [28], [39], to enable fast system response to contingencies
[4]. With reference to Eq. (7), the parameter details of the
excitation system used are KA = 200, and TA = 0.01s,
for all generators. Regarding the estimation procedure, IEEE
Standards-compliant PMUs with reporting rate of 120 frames
per second are used, to obtain measurements at the HV side
of the transformer which comes after the terminal bus of the
synchronous generator of interest. The maximum error of the
measured voltage magnitude is 9 · 10−3 p.u., and, the one
corresponding to the voltage phase is 2 ·10−3 rad, whereas the
maximum errors for the measured active and reactive power
values is 6 · 10−3 p.u. This errors are set in accordance with
the PMU related requirement of maximum 1% total vector
error (TVE), dictated by the IEEE Standard C37.118.1-2011,
blending together three possible sources of error for each
phasor: phasor magnitude, angle and time synchronisation
[42]. In the same context, the maximum frequency error is
0.005 Hz [42]. It has to be noted that the process disturbance
is comprised by the noise coming from the measured inputs,
and the estimation model is considered to be a highly accurate
representation of the real one. Power system modelling is
MATLAB/Simulink based, and all simulations last for 10 s.
Three case studies have been considered:
• Case Study 1A: A three-phase to ground fault occurs at

bus 9, at the time instant t = 2 s, it is cleared after 100
ms and the line connecting buses 8 and 9 is tripped at
the same time. The measurements are obtained at bus 9,
and the generator of interest is Gen. 3.

• Case Study 1B: A step increase by 1 p.u. in Tm of
Gen. 2 occurs at the time instant t = 2 s and lasts
for 1 s, returning to its previous value afterwards. The
measurements are obtained at bus 7.

• Case Study 1C: The overexcitation limiter (OEL) of Gen.
1 gets activated at the time instant t = 3.34 s. The OEL
used is of takeover type, designed according to the error
signal substitution scheme, the design characteristics and
the block diagram of which can be found in [4]. This
OEL type is likely to lower system stability margins,
therefore, it is important for its activation to be detected
by the proposed anomaly identification scheme [4]. The
measurements are obtained at bus 4.

The results showing the residual and the threshold values
for all measurement outputs of the case studies 1A, 1B, 1C,
and Gens. 3, 2, 1, respectively, are illustrated in Figs. 3, 4
and 5, respectively. It can be clearly noticed that the proposed
method is able to capture all simulated events, with at least
one residual value exceeding the value of the corresponding
threshold. Specifically, the events are detected at time instants
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Fig. 3. Case Study 1A: Output residuals and thresholds for Gen. 3

2.01 s, 2.01 s and 3.47 s, for case studies 1A, 1B, and 1C,
respectively, denoting in this way success of the anomaly
detection strategy.

B. IEEE Benchmark 68-Bus, 16-Machine System

The successful performance of the suggested anomaly de-
tection scheme on the previous study system, incentivized its
application to a larger, realistic power system. For this purpose,
the IEEE benchmark 68-bus, 16-machine NETS-NYPS system
has been used [29], illustrated in Fig. 6. The details of this
system can be found in [44]. Here, the synchronous machines,
which are not characterized by manual excitation (i.e. the
first 12), are equipped with fast static exciters, described by
Eq. (7), to enable fast system response to contingencies, in a
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Fig. 4. Case Study 1B: Output residuals and thresholds for Gen. 2
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Fig. 5. Case Study 1C: Output residuals and thresholds for Gen. 1
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similar approach as in the previous system, and to facilitate
the application of OELs [4]. The exciter design details are
the same as in the previous study system. Moreover, same
measurement noise levels as in the previous test system related
case studies have been considered. Three case studies have
been examined:
• Case Study 2A: A three-phase to ground fault occurs at

bus 25, at the time instant t = 2 s, it is cleared after 100
ms and the line connecting buses 25 and 26 is tripped at
the same time. The measurements are obtained at bus 25,
and the generator of interest is Gen. 8.

• Case Study 2B: A step increase by 1 p.u. in Tm of
Gen. 5 occurs at the time instant t = 2 s and lasts
for 1 s, returning to its previous value afterwards. The
measurements are obtained at bus 20.

• Case Study 2C: The OEL of Gen. 6 gets activated at the
time instant t = 3.34 s. The OEL used is of takeover
type, designed according to the error signal substitution
scheme, the design characteristics and the block diagram
of which can be found in [4]. The measurements are
obtained at bus 22.
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Fig. 6. NETS-NYPS 68-bus, 16-machine system

The implementation results depicting the residual and the
threshold values for all measurement outputs of the case
studies 2A, 2B, 2C, and Gens. 8, 5, 6, respectively, are shown
in Figs. 7, 8, and 9, respectively. The success of the proposed
anomaly detection algorithm can be easily evidenced, with the
events being captured at time instants 2.01 s, 2.05 s, and 3.37
s, for case studies 2A, 2B, and 2C, respectively. It has to be
noted that, the proposed anomaly detection strategy is able
to capture the OEL operation, without the need for excitation
voltage measurements, as in [4], where the practice of OEL
activation detection is primarily based on excitation voltage
measurements.

V. CONCLUSIONS

An observer-based anomaly detection scheme has been
presented, which is able to trace deviations from nominal
power system operation. This methodology relies on a linear
time-varying observer, addressing the need for an estimation
methodology tailored to a nonlinear system like a power
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Fig. 7. Case Study 2A: Output residuals and thresholds for Gen. 8
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Fig. 8. Case Study 2B: Output residuals and thresholds for Gen. 5
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Fig. 9. Case Study 2C: Output residuals and thresholds for Gen. 6

network, and it can be implemented in real time. The method
makes use of measurements at the high voltage side of the
transformer connected to the terminal bus of the respective
generator only, facilitating the utilization of a local approach.
The proposed algorithm has been tested on two power system
models, a small 9-bus 3-machine system, and the large,
realistic IEEE benchmark 68-bus 16-machine system, where
the results validate the success of its implementation. It is
important to highlight that the anomaly detection scheme is
based on a rigorous threshold calculation, without requiring
the consideration of noise probability distributions or empirical
criteria, making this method highly practical. This technique,
being effective in detecting the activation of limiting devices
such as overexcitation limiters, may serve as a valuable tool
for model updates in the context of power system dynamic
security assessment algorithms. The suggested methodology
can prove to be extremely beneficial to operators in the context
of power system monitoring, given the model uncertainty
characterizing modern power network operation.

APPENDIX A
ANOMALY DETECTION ALGORITHM

The anomaly detection scheme is summarized in Alg. 1.

APPENDIX B
CONVERGENCE ANALYSIS

The proposed observer’s (Eq. (29)) convergence analysis
requires the consideration of the state estimation error, whose

Algorithm 1 Anomaly detection
Set x̂0, ŷ0, ε̄0
k = 1

repeat
Collect measurements and inputs yk, uk
Compute state and output estimates x̂k+1 and ŷk (Eq. (29))
Compute output error rk = yk − ŷk
Compute estimation error bound ε̄k (Eq. (35))
Compute detection threshold r̄k (Eq. (36))

until
∣∣∣r(i)k

∣∣∣ ≤ r̄(i)k , ∀i

return Anomaly detection

dynamics can be described by the following linear time-
varying model:

εk+1 = xk+1 − x̂k+1

= Akεk −Bkνk + wk −Kk(yk − ŷk)

= (Ak −KkCk)εk −Bkνk + wk −Kk(−Dkνk + υk).
(38)

In order to guarantee the convergence of the state estimation
error (Eq. (38)), the result in [41] is used to define the matrix
Kk at each discrete time-step k as:

Kk = AkΦk,k−t−1G
−1
k,k−t−1Φ

>
k,k−t−1C

>
k , (39)

where t is a positive constant integer, Φk,k−t−1 is the transition
matrix from time k − t− 1 to time k:

Φk,k−t−1 = Ak−1Ak−2 . . . Ak−t−1,

with Φk,k = I, and Gk,k−t−1 is the observability Gramian,
defined as:

Gk,k−t−1 =
k∑

l=k−t−1

Φ>l,k−t−1C
>
l ClΦl,k−t−1.

We have the following result:
Proposition B.1: The state estimation error (Eq. (38)), with

the filtering matrix Kk defined as in Eq. (39), represents the
dynamics of a Bounded Input Bounded Output stable system.

Proof B.1: In [41] it is demonstrated that the proposed
filtering matrix Kk allows to guarantee the exponentially
asymptotically stability of the unforced system

εk+1 = (Ak −KkCk)εk

under the assumption that the pair [Ak, Ck] is uniform with
respect to complete observability. Since the uncertainties are
all bounded, then the time-varying system is Bounded Input
Bounded Output stable.

Here, in all case studies, t = 1, satisfying the uniform
observability requirement [41].
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