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Abstract—The expected penetration of a large number of
renewable distributed energy resources (DER’s) is driving next
generation power systems toward uncertainties that can have
a huge impact on the reliability and complexities of state
estimation. Therefore, the stochastic power flow (SPF) and
forecasting-aided state estimation of power systems integrating
DER’s are becoming a major challenge for operation of the
future grid. In this paper we propose a new state estimation
method referred to as ‘mean squared estimator’ (MSE) to deal
with the uncertain nature of the power system parameters.
The estimator aims at achieving minimum mean squared error
(MMSE) and benefits from the prior study of SPF, which
involves the probability density functions (PDF’s) of the system
parameters. The main advantage of this estimator is based on
its ability to instantaneously incorporate the dynamics of the
power system. Moreover, the analytical formula of MSE expresses
the mean value of the estimated parameters corrected by an
additional term that takes into account the measurement of the
parameters. It is shown that the proposed MSE can provide an
accurate state estimation with a limited number of measurements
with guaranteed convergence. MSE has been tested using IEEE
14, 30, 39 and 118 bus models for different measurement
redundancies. The results have been compared to methods such
as weighted least square (WLS), unscented Kalman filter (UKF)
and compressive sensing-based UKF (CS-UKF). The numerical
results show superior performances, especially under a limited
number of measurements where WLS and UKF may lead to
divergence.

Index Terms—Dynamic state estimation; minimum mean-
squared error; Gaussian mixture model; analytic estimator;
limited number of measurements.

I. INTRODUCTION

The deployment of renewable resources in distributed grid
systems poses a set of new challenges mainly due to their
variability and dependency on climate parameters, which can
have a major impact on the system parameters that are needed
to measure power flow and state estimation. The first aims
at calculating the entire system parameters, based on prior
knowledge (or prediction) of some of the parameters, while the
latter, which is the backbone of energy management systems,
estimates these parameters measured under noisy conditions.
More precisely, a state estimator aims at providing estimated
values of the system parameters roughly equal to the true
values by eliminating measurement errors. In the presence
of renewables, many studies in the past have incorporated
the system uncertainties for power flow measurement and
state estimation. Stochastic power flow (SPF) and forecast-
aided state estimation, also called dynamic state estimation
(DSE), take into consideration the uncertain behavior of

power generations and loads. The main objective is to de-
termine the probability density function (PDF) of the power
system parameters to solve the SPF problem [1]–[13]. For
instance, in [1], the authors propose to combine the concept
of Cumulants and Gram-Charlier’s expansion theory, and [2]
presents a comparative and analytic study of four different
Hong’s point estimate schemes to solve the SPF problem.
A practical method to tackle various random variables, such
as renewable energy sources parameters that follow different
types of probability distributions, has also been proposed in
[4]. In the case of unknown input PDF’s, a method for non-
parametric probabilistic load flow analysis is developed in [5].
Other studies mainly use a Gaussian mixture model (GMM)
to approximate the PDF of loads or a mix of DER’s, which
cannot be approximated with a known shape PDF [6]–[8].
Furthermore, there has been tremendous effort towards real-
time DSE in support of next generation power systems [14]–
[23]. In particular, with the emergence of the phasor measure-
ment units (PMU’s) having the unique capability of providing
synchronous measurements, real-time DSE has been receiving
considerable attention [24]–[36]. Moreover, various versions
of Kalman filtering have also been developed in order to
improve DSE performances and its robustness while reducing
the execution time [33], [34]. For instance, three versions
of Kalman filtering, namely, extended Kalman filter (EKF),
the unscented Kalman filter (UKF), and the Cubature Kalman
filter (CKF) with or without PMU’s measurements have been
evaluated in [35]. By utilizing the PMU’s measurements, the
authors in [36] have developed an extended Kalman filter with
unknown inputs (EKF-UI) that can estimate the states as well
as the unknown inputs of the synchronous machine. On the
other hand, the study in [22] describes a generalized maximum
likelihood (GM)-estimator on power systems (GM-PSE). In
this method, short-term forecasts of the distributed energy
resources (DER’s) and loads are first calculated to predict the
states. A redundant batch regression model is then used to
process the predicted states and measured parameters. The
method uses an iteratively re-weighted least squares (IRLS)
algorithm to obtain the final estimated states. To track the
system transients faster and with better reliability, the same
authors present an iterated extended Kalman filter using the
generalized maximum likelihood approach (termed GM-IEKF)
[23]. We should point out, however, that all aforementioned
methods are designed to predict and then estimate the states
regardless of any prior knowledge of the states PDF’s that the
SPF is supposed to determine.
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In this paper, we present a new analytic-based state esti-
mator, referred to as ‘Mean Square Estimator’ (MSE), that
uses the outputs of the SPF by assuming a prior knowl-
edge of the state parameters distribution regardless of their
shapes. Specifically, our approach is based on the calculus
of the minimum mean squared error (MMSE) that deals
with generally non-Gaussian Random Variables (NGRV’s).
Therefore, the GMM, which is an approximate presentation of
the PDF’s of NGRV’s, is utilized in the proposed estimator.
As a weighted sum of several Gaussian components, GMM
is widely used for NGRVs probability distribution [6]–[8],
[37], [38]. More specifically, in many studies, GMM has been
suggested to model the PDFs of load power and renewable
energy sources [39]–[43]. Since the proposed MMSE-based
estimator is an analytical approach, it can provide estimated
values instantaneously. In addition, its performance remains
good even with a limited number of measurements, which
is important in the case of a wide system. For instance, an
extension of state estimation to medium and low voltage grids
may require a large number of measurements that can have a
considerable impact on state estimation complexities. In terms
of performance, the proposed estimator is compared with the
weighted least squares method (WLS) and UKF using various
IEEE test systems.

The paper is organized as follows: Section II presents the
fundamentals of GMM presentation of NGRV’s. Section III in-
troduces the formulation of the proposed MSE as a conditional
expectation of the estimated states for the given measurements.
Section IV derives formulas of generating moments followed
by the general formula of MSE when states and measurements
are NGRV’s. The results of the proposed state estimation
approach using the IEEE 14, 30 and 118 bus models are
then presented in Section VI. Finally, Section VII provides
the conclusion and some perspectives.

II. GAUSSIAN MIXTURE MODEL

In this section we give a brief overview of the funda-
mentals of GMM for the presentation of any NGRV as
a function of Gaussian components. Gaussian distribution,
which is commonly used for modeling univariate data, can
be extended to two or more variables. There are many studies
in open literature that provide the formulation of any order
of the moments of Gaussian random variables (GRVs) [41],
[42]. Furthermore, Gaussian distribution can be considered to
formulate the moments of NGRVs. Note that in the rest of
the paper, the notations IE(X), XT and X−1 are used to
express the expectation, the transposed and inverse matrices
of X respectively.

A. Gaussian Density

A multivariate random variable x = [x1, x2, . . . , xn] is said
to be distributed as the multivariate Gaussian distribution with

mean µx and covariance matrix Σx, x ∼ N(x;µx,Σx), if
the density function of x is given by [44]

g(x|µx,Σx) =
1√

(2π)n|Σx|
. . .

exp

[
−1

2

(
(x− µx)TΣx

−1(x− µx)
)] (1)

B. Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is an approximate
presentation of a non-Gaussian density function of a random
variable x (it can be a multivariate variable) by a mixture (a
summation) of Lx Gaussian distribution components [6]–[8],
[37], [38]. It can be expressed as,

fX(x) =

Lx∑
i=1

wx|ig(x|µx|i,Σx|i), (2)

where x is an n-dimensional vector of continuous values,
the vector of the estimation problem parameters, wi, i =
1, . . . , Lx, are the mixture weights, and g(x|µx|i,Σx|i),
i = 1, . . . , Lx, are the components Gaussian densities. Each
component is an n−variate Gaussian function as defined
preciously, with µx|i and Σx|i being the mean vector and
the covariance matrix of x, respectively. The mixture weights
satisfy the following equality,

Lx∑
i=1

wx|i = 1, (3)

Therefore, the mean value vector and covariance matrix of
x can be approximated in terms of the Gaussian components
parameters as follows,

µx =

Lx∑
i=1

wx|iµx|i, (4)

Σx =

Lx∑
i=1

wx|i

(
Σx|i +

(
µx|i − µx

) (
µx|i − µx

)T)
. (5)

III. MINIMUM MEAN SQUARE ERROR BASED POWER
SYSTEM STATE ESTIMATION

A. Problem formulation

State estimation aims at determining an optimal estima-
tion of a vectors’ parameters x = [x1, . . . , xN ] giving a
vector of measurements z = [z1, . . . , zM ] and functions
h = [h1, . . . , hM ] ] based on the following relationship,

z = h(x) + v (6)

where v represents the noise. In the case of power system state
estimation, the estimated parameters are voltage amplitudes
and angles, e.g. x = [θ,V ]. Moreover, using PMU’s or
Supervisory Control And Data Acquisition (SCADA) mea-
surements, the function hj(x) is either a linear function of
voltage amplitude and angle measurements or a non-linear
function of active and reactive power measurements. Notations
ZV , Zθ, ZP , ZQ stand for the sets of buses equipped with
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measurements meters of voltage amplitude and angles, active
and reactive power injections respectively. ZPf

and ZQf

present the sets of pairs of buses with measured active and
reactive power flow respectively. Therefore,

hj(x) = Vn for zj = zVn
, n ∈ ZV

hj(x) = θn for zj = zθn , n ∈ Zθ
hj(x) = Pn for zj = zPn

, n ∈ ZP
hj(x) = Qn for zj = zQn , n ∈ ZQ
hj(x) = Pnk for zj = zPnk

, (n, k) ∈ ZPf

hj(x) = Qnk for zj = zQnk
, (n, k) ∈ ZQf

(7)

j = 1, . . . ,M

In the above, zVn , zθn are the measurement values of voltage
amplitude and angle, respectively at bus n and zPn

, zQn
are the

measurements of active and reactive power: Pn, Qn, defined
in (8), (9) respectively, and zPnk

, zQnk
correspond to the

measurements of active and reactive power flow Pnk, Qnk
between the buses n and k, as defined in (10), (11) respectively
[45].

Pn = Vn
∑
k∈N

Vk(Gnk cos θnk +Bnk sin θnk) (8)

Qn = Vn
∑
k∈N

Vk(Gnk sin θnk −Bnk cos θnk) (9)

Pnk = −V 2
nGnk + VnVk(Gnk cos θnk +Bnk sin θnk) (10)

Qnk = −V 2
nBnk − VnVm(Gnk sin θnk −Bnk cos θnk) (11)

where the notation Vn stands for the voltage magnitude at the
nth bus. θnk = θn − θk is the angular difference of voltage
phases at the buses n and k, Gnk and Bnk are the real and
imaginary part of admittance elements. N is the set of the
network buses.

B. Minimum mean-squared error

The objective function of an MMSE-based estimator is
defined as follows [44],

min
x̂MS

J(x̃MS) (12)
with

J(x̃MS) = IE
(
x̃T
MSx̃MS

)
where x̃MS = x− x̂MS is the estimation error of x and x̂MS

is the estimated value of x using MSE. x̃T
MS is the transposed

vector of x̃MS. The solution to this problem, as proven in [44]
is the conditional expectation of x knowing the measurements
vector z,

x̂MS = IE(x|z), (13)

This result is called the fundamental theorem of estimation
theory and is true for both linear and non-linear system [44].
Moreover, the minimum value of J(x̃MS), which also presents
the variance of the estimation error, is given as,

J∗(x̃MS) = IE(xTx|z)− IE(xT|z)IE(x|z). (14)

where xT is the transposed vector of x. This expression is the
summation of the conditional variances of the elements of x
knowing z.

C. Mean squared estimator for Gaussian input parameters

According to [44], when x and z are jointly Gaussian, the
estimator that minimizes the mean-squared error is

x̂MS = µx + ΣxzΣz
−1 [z − µz] . (15)

Furthermore, the above estimator for x is NGRV’s can be
expressed in two forms depending on z is Gaussian or non-
Gaussian. Nonetheless, the estimator given in (15) provides
an optimal state estimation which would require determining
the value of the covariance matrix Σxz of the estimated
parameters and the measurements, as well as the covariance
matrix Σz of the measurements. Elements Σxizj for the
elements (i, j) ∈ Ns×Nm (Ns, Nm are the sets of estimated
parameters and measurements respectively) in the matrix Σxz
can be calculated using the following expression of two RV’s
covariance,

Σxizj = IE(xizj)− µxiµzj , (16)

From (6),
zj = hj(x) + vj .

Therefore,

IE(xizj) = IE(xihj(x)) + IE(xivj), (17)

Consider xi and vj uncorrelated, then IE(xivj) =
IE(xi)IE(vj). Assuming that the noise has zero mean IE(vj) =
0, the following expression can be obtained,

IE(xizj) = IE(xihj(x)). (18)

This clearly indicates that computation of matrix Σxz would
require calculating the expectation values IE(xihj(x)). This
matrix can be expressed in terms of sub-matrices that corre-
spond to covariances between the estimated state parameters
and the measurements as given in (7). Therefore, Σxz can be
expressed as,

Σxz =

[
Σθ,θ Σθ,V Σθ,P Σθ,Q Σθ,Pf Σθ,Qf

ΣV,θ ΣV,V ΣV,P ΣV,Q ΣV,Pf ΣV,Qf

]
(19)

where Σθ,θ , Σθ,V , Σθ,P , Σθ,Q, Σθ,Pf , Σθ,Qf are the
covariance matrices between the voltage angle (estimated
parameter) and the measurement parameters, i.e. voltage angle
and amplitude, power injections and power flows, respectively.
While ΣV,θ, ΣV,V , ΣV,P , ΣV,Q, ΣV,Pf , ΣV,Qf hold the
covariance matrices between the voltage amplitude (estimated
parameter) and the measurement parameters, i.e. voltage angle
and amplitude, power injections and power flows, respectively.

The calculus of the mean values IE(xizj) can be achieved
using the PDF’s of voltage and measurement parameters, given
by the SPF study. In the same way, the elements of the
measurements covariance matrix Σz can be expressed as the
difference between the mean value of the product of two
measurements and the product of their mean values.
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IV. GENERAL FORMULA OF MEAN SQUARED ESTIMATOR

Monitoring and state estimation of power system parameters
requires the treatment of several NGRV’s. For theoretical
reasons, assume a Gaussian distribution of uncertain variables
can be most conveniently used for state estimation [44], [46].
The purpose behind this section is to present the general
formula of MSE by developing the calculus of IE(x|z) in the
case where states and measurements are NGRV’s. To achieve
this, we develop the calculus of the moments of a generic set
of NGRV’s, which are based on the GMM approximation of
these variables.

A. On the moments of correlated non-Gaussian random vari-
ables

As mentioned before, the MMSE-based estimator is for-
mulated in terms of the moments of voltage parameters, e.g.
amplitudes and angles, and measurements. The PDF’s of these
parameters are not generally Gaussian. Therefore, based on
the GMM approximation of these parameters, an analytical
solution of the moments of NGRV’s is developed in the
following using formulas of the moments of GRV’s.

Proposition 1 (Moments of NGRV): Let x be a RV and its
GMM is as given in (2). Therefore,

IE(x1x2 . . . xn) =

Lx∑
i=1

ωx|iIE(x1x2 . . . xn|µx|i,Σx|i), (20)

where IE(x1x2 . . . xn|µx|i,Σx|i) is the moments of
x1, x2, . . . , xn based on the ith component of x’s PDF.

Proof : Consider the characteristic function of x as,

ϕx(u) =

∫
IRn

exp{j(u,x)}fX(x)dx

=

Lx∑
i=1

ωx|i

∫
IRn

exp{j(u,x)}g(x|µx|i,Σx|i)dx

=

Lx∑
i=1

ωx|iϕx|i(u)

(21)
where ϕx|i is the characteristic function of a jointly Gaussian
random variable. j is the complex number defined as j2 = −1
and (u,x) denotes the scalar product of u and x, i.e. (u,x) =
uTx. Given that the moments of n random variables can be
obtained by differentiating the characteristic function,

IE(x1x2 . . . xn) =
1

jn
∂n

∂u1 . . . ∂un
ϕx(u)|u=0 (22)

Using the expression in (21), the moment of n NGRV’s can
be obtained as,

IE(x1x2 . . . xn) =

Lx∑
i=1

ωx|i
1

jn
∂n

∂u1 . . . ∂un
ϕx|i(u)|u=0

(23)
Therefore, the expression of the moment of NGRV’s can be

given in terms of the moments of the Gaussian components
in GMM of these RV’s, as expressed in (20).

B. General formula of MSE

The MMSE-based estimator presented in (15) is optimal
when the states are GRV. Generally the voltage amplitude and
angle are non-Gaussian. A new formula of the MSE estimator
is presented in the following proposition for an NGRV for x,
when GMM components of x and z are jointly Gaussian.

Proposition 2 (Conditional expectation of NGRV): Let x be
an NGRV whose GMM is given in (2) and z being a GRV. If
each of the GMM components of x and z are jointly then,

IE(x|z) = µx +

Lx∑
i=1

ωx|iΣx|i,zΣz
−1 [z − µz] . (24)

with Σx|i,z is the covariance matrix of x (i.e., the ith

components of its GMM) and z.

Proof Applying Proposition 1 in the case of the first moment,

IE(x|z) =

Lx∑
i=1

ωx|iIE(x|z,µx|i,Σx|i), (25)

where IE(x|z,µx|i,Σx|i) is the expectation of x following the
ith Gaussian component of GMM of x’s PDF, conditioned by
z. Thus, we can show,

IE(x|z,µx|i,Σx|i) = µx|i + Σx|i,zΣz
−1 [z − µz] . (26)

Giving that,
Lx∑
i=1

ωx|iµx|i = µx

This indicates that IE(x|z) can indeed be expressed as
in (24). However, we should emphasize that proposition 2
provides the formula of conditional expectation when the
general expected parameter (NGRV) is conditioned by a
GRV. However, measurements in a power system, i.e. voltage
parameters (amplitude and angle), power injection, and power
flow can also be NGRV. Later, we present the calculus of the
conditional expectation of NGRV conditioned by NGRV.

Proposition 3 (Expectation of NGRV conditioned by NGRV):
Let x and z be NGRV’s whose PDF’s are approximated by
GMM according to (2) and (27), respectively,

fZ(z) =

Lz∑
j=1

ωz|jg(z|µz|j ,Σz|j), (27)

then

IE(x|z) = µx +

Lx∑
i=1

Lz∑
j=1

ωx|iωz|iAx|i,z|j

[
z − µz|j

]
.

(28)
with

Ax|i,z|j =
g(z|µz|j ,Σz|j)

fZ(z)
Σx|i,z|jΣ

−1
z|j . (29)
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where Σx|i,z|j is the covariance matrix of x and z based on
the ith and jth components of their GMM’s.

Proof To prove this proposition, we use the conditional den-
sity function as defined in [44], [47], expressed as

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
. (30)

Now let y =

[
x
z

]
, µy|i,j =

[
µx|i
µz|j

]
and

Σy|i,j =

[
Σx|i Σx|i,z|j

Σz|j,x|i Σz|j .

]
Herein, the joint PDF of x and z is approximated as follows,

fX,Z(x, z) =

Lx∑
i=1

Lz∑
j=1

ωx|iωz|jg(y|µy|i,j ,Σy|i,j), (31)

Therefore,

fX,Z(x, z) =

Lz∑
j=1

ωz|jfX,Z(x, z|µz|j ,Σz|j), (32)

where fX,Z(x,z|µz|j ,Σz|j) is the joint PDF of x and
z based on the jth GMM component of z’s PDF. Mul-
tiplying both the numerator and denominator in (30) by
g(z|µz|i,Σz|i), we can obtain the following formula,

fX|Z(x|z) =

Lz∑
j=1

ωz|j
g(z|µz|j ,Σz|j)

fZ(z)

fX,Z(x, z|µz|j ,Σz|j)
g(z|µz|j ,Σz|j)

.

(33)
Finally, integrating xfX|Z(x|z) with respect to x and using

Proposition 2, the formula in (28) can be obtained. Therefore,
IE(x|z) in (28) presents the general formula of the proposed
MMSE-based estimator, x̂MS, as originally expressed in (13).

V. PROPERTIES OF MEAN SQUARED ESTIMATOR

The purpose behind this section is to analyze the main
properties of the proposed estimator, which are described
below.

A. Umbiasedeness and minimum variance

Property 1 (Unbiasedness): The estimator x̂MS as defined
in (13) is unbiased.

Proof It is obvious that x̂MS = IE(x|z) is unbiased when z
is GRV. By applying the mean function on both sides of the
equation in (15), we can show,

IE(x̂MS) = µx. (34)

For z being an NGRV, the expected value of the expression
in (28) can be shown as,

IE

(
g(z|µz|i,Σz|i)

fZ(z)

[
z − µz|i

])
=

∫ ∞
−∞

g(z|µz|i,Σz|i)
fZ(z)

[
z − µz|i

]
fZ(z)dz

=

∫ ∞
−∞

g(z|µz|i,Σz|i)
[
z − µz|i

]
dz

= 0.
(35)

Therefore, applying the expectation function on all the
elements of the summation in (28), the equation (34) is
obtained which verifies that x̂MS is an unbiased estimator.

Property 2 (Minimum variance): an estimator is said to be
a minimum variance estimator (MVE) if it has the smallest
error variance [44].

Proof Since this is a minimum mean squared error estimator
[44], it is therefore an MVE. Moreover, the value of the error
variance is given in (14).

Moreover, the minimum error variance that minimize the
function in (12) as expressed in (14) can be further developed
as,

J∗(x̃MS) = IE

(∑
n∈N

x2n|z

)
−
∑
n∈N

(IE(xn|z))
2

=
∑
n∈N

(
IE(x2n|z)− (IE(xn|z))

2
)

=
∑
n∈N

σ2(xn|z1, . . . , zM )

(36)

Or,

σ2(xn|z1, . . . , zM ) ≤ σ2(xn|z1, . . . , zj−1, zj+1, . . . , zM ),
∀n ∈ {1, . . . , N},∀j ∈ {1, . . . ,M}

(37)
Where M is the maximum number of PMU measurements
based on full network observability. For instance, since the
error is a zero-mean, the impact of missing a single measure-
ment, e.g., zj in (37), can be quantified by a positive added
value to the minimum error variance as,

∆J∗ =
∑
n∈N

(
σ2(xn|z1, . . . , zj−1, zj+1)− σ2(xn|z1, . . . , zM )

)
.

(38)
Therefore, the maximum value of the minimum error vari-

ance can be reached in the absence of any measurements. This
can be quantified as,

J∗(x̃MS) ≤ J∗max =
∑
n∈N

σ2
xn
. (39)

It should be noted that the minimum required number of
measurements depends on the statistics of the state parameters,
as well as the selection of a suitable threshold value that
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we have imposed on the error variance. The threshold value
is selected in order to provide a tradeoff between the state
estimation accuracy and the number of measurements. This
will be further discussed in the next section (i.e., see also Eq.
47).

B. Bad measurement identification

Many factors can lead to bad or corrupt measurements such
as device malfunction or malicious data injection [48], [49].
The presence of bad measurements can be quantified by [50],

z′ = z + o (40)

where z is as defined in (6) and z′ is the infected measure-
ments by an unknown vector o. An element oj in o is non-zero
only if zj is a bad datum. Therefore, using the general formula
of MSE as given in (28), the impact of bad measurements on
the estimated states can be expressed as,

∆x̂MS = Bo. (41)

with,

B =

Lx∑
i=1

Lz∑
j=1

ωx|iωz|iAx|i,z|j (42)

On the other hand, from (14) and using IE(x|z) = x̂MS ,
we obtain,

J∗(x̃MS) = IE(xTx|z)− x̂TMSx̂MS . (43)

Therefore, based on an proposition 3, J∗(x̃MS) can be
calculated immediately using the GMM presentation of the
PDF of xTx. Moreover, the mean value of J∗(x̃MS) can be
evaluated using the following property of conditional variance,

σ2
x = IE(σ2(x|z)) + σ2(IE(x|z)), (44)

In other expression,

IE(σ2(x|z)) = σ2
x − σ2

x̂MS
. (45)

From (36) and (45),

IE(J∗(x̃MS)) =
∑
n∈N

(
σ2
x − σ2

x̂MS

)
n
. (46)

where
(
σ2
x − σ2

x̂MS

)
n

is the nth component of σ2
x − σ2

x̂MS
.

Knowing the mean value of the minimum error variance in
the case of no bad data present in the measurements vector, a
threshold of J∗(x̃MS) can be defined in terms of IE(J∗(x̃MS))
as,

J∗(x̃MS) ≤ αIE(J∗(x̃MS)) (47)

This criteria allows to determine if the measurements vector
is holding a bad datum. In the case of the minimum variance
bigger than the threshold, it is proposed to eliminate one-by-
one measurements and reevaluate until respect of the criteria.

VI. SIMULATION AND DISCUSSIONS

Simulations using benchmark IEEE test networks i.e, IEEE
14-bus, IEEE 30-bus and IEEE 118-bus have been conducted
to validate the performances of the MMSE-based approach for
power systems. In this section, a description of our simulation
environment and test systems are presented followed by a brief
description of a benchmark estimation method such as WLS,
which is used for the sake of comparison. Finally, we analyze
and discuss the results.

A. Simulations description

Performances of the proposed MMSE-based estimator for
the three test models are evaluated using the IEEE test models.
Bear in mind that the proposed approach requires a prior
probability of the SPF in order to provide distribution for
both estimated and measured parameters. For the sake of
generalization, we use the data provided in [51], [52] for power
generation while the load power is assumed to be random
variables with mean values equal to the load, as in [51],
[52].We assume that all the loads have a ratio of the standard
deviation over the mean value; CV = 0.1. To validate the
performance of the proposed approach for a general case of
non-Gaussian parameters, GMM parameters are required. For
the sake of simplification and generalization, a data in the case
of two Gaussian components is randomly generated given the
mean and standard deviation of the power at each bus and
verifying the GMM conditions in (4) and (5).

The active power at all the buses is assumed to be correlated.
The correlation matrix for load powers is generated randomly
in [0, 1] and is kept the same within the GMM components
while the active and reactive powers are assumed to be fully
correlated while keeping the power factor constant. Then the
Monte Carlo simulations (MCS) are ran for Nmcs = 10000
simulations in order to solve the Newton Raphson based power
flow using the package of MATLAB MATPOWER provided in
[53]. Based on the MCS results, the fitting function of Matlab
“gmdistribution.fit” is then used to provide the GMM compo-
nents of the MCS outputs; mainly the estimation parameters
and the measurements. This function gives maximum likeli-
hood estimates of the parameters in a Gaussian mixture model
with, for instance, k = 2 components. The analytical for-
mula of the proposed MSE estimator expresses the estimated
parameters as the mean value corrected by an additive term
which is the product of the covariance matrices of estimated
and measured parameters and the subtraction of current value
and mean value of the measurements (see equation (28)). This
process would allow the estimator to perform a highly accurate
state estimation with a limited number of measurements. To
validate this capability, four different cases, defined by the
number redundancy of the measurements as shown in Table I,
have been investigated. Note that the redundancy is defined
as the ratio of the measurements number over estimated
parameters number [22]. The notations |Ns|, |Zθ,V |, |ZP,Q|
and |ZPf ,Qf

| are the sizes of the estimated parameters, the
measured voltage, the measured power injection and measured
power low sets respectively. We assume an Additive White
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TABLE I: Measurements configuration for the 3 test networks

Test
Case |Ns| |Zθ,V | |ZP,Q| |ZPf ,Qf

| Redundancy
system

1 27 14 28 40 3.04

IEEE 2 27 8 14 20 1.56

14-bus 3 27 4 10 14 1.04

4 27 4 8 10 0.81

1 59 30 60 82 2.90

IEEE 2 59 16 30 42 1.50

30-bus 3 59 10 20 28 0.98

4 59 8 16 22 0.78

1 235 118 236 372 3.09

IEEE 2 235 60 118 186 1.55

118-bus 3 235 40 78 124 1.03

4 235 30 60 94 0.78

1 77 40 80 110 2.99

IEEE 2 77 20 40 56 1.51

39-bus 3 77 14 26 38 1.01

4 77 10 20 28 0.75

Gaussian noise (AWGN) for the measurements with standard
deviations of 1% for voltage (amplitude and angle) and 2%
for power injections and flows. A sample size of Nspl = 200
has been considered for the MCS running of WLS, UKF,
and MSE. In these experiments we consider Nspl different
measurements generated according to the obtained PDFs from
the SPF study. For each experiment, WLS, UKF, and MSE
have been used to calculate the estimated states, i.e. voltage
amplitude and angle. These simulations have been run on an
Intel i7-4600U processor at 2.7 GHz using a Matlab code.

B. Comparison methods

In this study, WLS and UKF have been used as refer-
ence methods to evaluate the relative performance of the
proposed MSE method, especially in the case of redundant
measurements scenarios. Furthermore, for scenarios with a
limited number of measurement where the is no guarantee
that WLS and UKF can converge, we consider a combination
of compressive sensing and UKS which will be referred to
as CS-UKF. Such a combination is inspired by the SPF
methods presented in [49], [50], [54], [55]. In this paper, a CS-
UKF-based approach is developed as an additional reference
method to aid our evaluations. This method is based on two
successive steps. The first considers CS to reconstruct the
measurements vector followed by UKF to estimate the system
states. The CS process exploits the available statistics on
the measurement parameters, as well as their correlations to
reconstruct the complete vector of measurements. Bear in mind
that the CS theory is based on reconstruction of the complete
signal (more redundant measurement vector) from available
compressed measurements (less redundant measurements vec-
tor). The availability of statistics on the state parameters
makes the measurement vector a spare signal which can then
be compressed and reconstructed. The recovery of a more
redundant measurement vector zr from a limited measurement

vector using the SPF information can be developed as,

ẑr = IE(zr|zm) (48)

where ẑr is the recovered measurements vector. Therefore, us-
ing Proposition 3, the conditional expectation can be evaluated
from the measurement parameters statics. Note that zr con-
tains zm elements besides other unavailable measurements,
then |zr| ≥ |zm|.

C. Performance comparisons

In these experiments we compare the performance of the
proposed MSE to those obtained by WLS and UKF. The true
values are considered as the state values obtained from the
power flow. To assess MSE, UKF and WLS performances,
the mean absolute error (x̂MAE) of both voltage amplitude
and angle are calculated using the following expression,

x̂MAE =
1

Nx

Nx∑
i=1

IEspl(|x̂i − xtruei |), (49)

with

IEspl(x) =
1

Nspl

Nspl∑
j=1

xj

where xj is the value of x corresponding to the jth element in
the considered sample. xtruei and x̂i are the true and estimated
values of state i, while Nx is the number of estimated states.

D. Results and discussion

Table II displays the V̂MAE and θ̂MAE results for the IEEE
test models using 4 different numbers of measurements (i.e.,
case 1-4). For the three test system, WLS converges for cases
1 and 2. However, it diverges for cases 3 and 4 where the
measurement redundancy is lower (<' 1). Comparing cases
1 and 2, the results show that MSE outperforms WLS and
UKF in terms of MAE values (see equation 49). Fig. 1 illus-
trates the values of mean absolute error over the considered
sample of each estimated state. Figs. 1a, 1b and 1c show
the voltage amplitudes absolute error for IEEE-14, -30 and
-118 bus, respectively, while Figs. 1d, 1e and 1f display their
voltage angles absolute error. As can be observed for all three
IEEE test models, the MSE performances are well below
those of WLS and UKF for all buses verifying the superior
performances of the proposed estimator. In addition, with an
even smaller number of measurements (e.g., cases 3 and 4),
the performance of MSE does not deteriorate considerably as
indicated in Table II. Fig. 2 illustrates the obtained curves
of the mean absolute error over the considered simulation
sample of each estimated state. Indeed, Figs. 2a, 2b and 2c
illustrate the voltage amplitudes absolute error for IEEE-14,
-30 and -118 bus respectively. Moreover, Figs. 2d, 2e and 2f
are illustrating voltage angles absolute error for IEEE-14, -30
and -118 bus respectively. Finally, for the sake of comparison
in cases 3 and 4 where WLS and UKF do not converge,
CS-UKF has been deployed and the results are illustrated
in Fig. 3. It shows that MSE overcomes CS-UKF. Besides,
comparing the execution time of the estimation methods which
are given in Table II, which shows that MSE can significantly
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TABLE II: Mean values of the absolute error for different measurements configuration of IEEE benchmark systems

Test system
V̂MAE × 103 θ̂MAE × 103 Execution time

Method Cases Method Cases
1 2 3 4 1 2 3 4 (ms)

WLS 0.7060 0.8065 NA NA WLS 0.3228 0.3937 NA NA 210
IEEE UKF 0.0719 0.3581 NA NA UKF 0.1117 0.3703 NA NA 3141
14-bus CS-UKF 0.0719 0.0891 0.3440 0.3491 CS-UKF 0.1117 0.2633 0.3638 0.8483 3150

MSE 0.0422 0.0606 0.1652 0.1516 MSE 0.1046 0.1292 0.1843 0.4783 7
WLS 0.2394 0.8950 NA NA WLS 0.2423 0.3054 NA NA 65

IEEE UKF 0.0839 0.3755 NA NA UKF 0.0779 0.4419 NA NA 815
30-bus CS-UKF 0.0839 0.1235 0.3839 0.7295 CS-UKF 0.0779 0.1015 0.2993 0.5043 823

MSE 0.0595 0.0995 0.1262 0.2549 MSE 0.0600 0.2292 0.1993 0.3139 8
WLS 0.1324 0.3892 NA NA WLS 0.1125 0.5717 NA NA 569

IEEE UKF 0.0540 0.3575 NA NA UKF 0.0843 0.3967 NA NA 9298
118-bus CS-UKF 0.0540 0.0983 0.3501 0.3532 CS-UKF 0.0843 0.0523 0.3508 0.3499 9324

MSE 0.0147 0.0361 0.0465 0.0626 MSE 0.0668 0.1674 0.1504 0.2993 26

(a) (b) (c)

(d) (e) (f)

Fig. 1: Comparison of IEspl(|V̂i−V truei |) for (a) IEEE-14 bus, (b) IEEE-30 bus and (c) IEEE-118 bus and of IEspl(|θ̂i−θtruei |)
for (d) IEEE-14 bus, (e) IEEE-30 bus and (f) IEEE-118 bus using WLS, UKF and MSE in cases 1 and 2 of measurements
configuration.

outperform CS-UKF. In addition, as shown in Table II, CS-
UKF, UKF and WLS, due to their iterative nature, would
require a significantly higher execution time than MSE. This
unique future is important for real-time grid monitoring and
fast state estimation.

E. Case of bad measurements

The study of this case aims at showing the performances
of the proposed estimator on identifying and eliminating bad
measured data. To realize this purpose, a samples of 200
estimations is evaluated using MSE. In this case, arbitrary
values have been added to the measurement vector at iterations
over the range [50−59] to one parameter and over [100−109]
to two parameters applied to IEEE-118 bus network. Fig. 4
illustrates the variation of the voltage angle estimation. It is
shown in Fig. 4a that the error increases clearly when some

measurements are corrupted. Moreover, as expected in our
previous analysis, the error variance also increases in terms of
number and value of the bad datum which allows to identify
and then eliminate it. To decide whether the measurements are
corrupted or not, a chosen value of α = 2 in the criteria in
(47).

F. Use case using EMTP-RV

The design of the proposed estimator is based on availability
of the system statistics under various test environments. To
gather such statistics we use an EMTP-RV 1 software tool for
real-time assessment of the proposed method [56]. EMTP-RV

1Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Comparison of IEspl(|V̂i−V truei |) for (a) IEEE-14 bus, (b) IEEE-30 bus and (c) IEEE-118 bus and of IEspl(|θ̂i−θtruei |)
for (d) IEEE-14 bus, (e) IEEE-30 bus and (f) IEEE-118 bus using MSE in cases 1, 2, 3 and 4 of measurements configuration.

(a)

(b)

Fig. 3: Comparison of (a) IEspl(|V̂i − V truei |) and of (b)
IEspl(|θ̂i− θtruei |) for IEEE-118 bus using CS-UKF and MSE
in cases 3 and 4 of measurements configuration.

is an Electro Magnetic Transients Program (EMTP) software
tool where PMU devices can be placed at any desirable
location in the grid network. EMTP-RV has been widely
used as a time domain transient solution [24], [57]. It is
able to provide almost all power system components, such as
power plant, transformer, windfarm, different kinds of faults,

(a)

(b)

Fig. 4: Illustration of (a) IEspl(|θ̂i − θtruei |) and (b) its cor-
responding minimum error variance for IEEE-118 bus in the
case of bad datum.

overhead lines with line and ground wires and towers, as well
as underground cables. In our experiments using EMTP-RV we
considered the IEEE 39-bus transmission model where PMUs
are placed on buses to collect and process samples of power
signals. To assess the impact of uncertainties on the proposed
state estimation, we added 4 wind parks, each of 100 wind
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(a)

(b)

Fig. 5: Comparison of (a) IEspl(|V̂i − V truei |) and of (b)
IEspl(|θ̂i− θtruei |) for IEEE-118 bus using MSE in cases 1, 2,
3 and 4 of measurements configuration.

turbines of 1.5MW, and 4 photovoltaic farms, each of 34 solar
arrays of 2MW to the IEEE 39-bus, as illustrated in Fig. 6.
Power and voltage signals generated by EMTP-RV have been
collected and then applied to evaluate the MSE performance.
Fig. 5 illustrates the mean absolute error for the 4 measurement
configurations given in Table I.

VII. CONCLUSION

In this paper, a new analytical-based state estimator, referred
to as Mean Squared Estimator (MSE), has been proposed for
the general case where a state parameters and measurements
are non-Gaussian random variables (NGRV’s). In our analysis,
we use the GMM to approximate the NGRV’s PDF as a
weighted summation of Gaussian components to derive a
general formula as a conditional expectation of the estimated
states for a given set of measurements. Simulations have
been carried out using three benchmark IEEE test models.
The performance of the proposed MSE approach has been
compared to those of WLS, UKF and CS-UKF. The results
verify that the proposed approach outperforms the background
methods. It is also shown that the proposed state estimator can
perform highly accurate estimations with a limited number of
measurements. This work will be extended in order to present
more analysis on dynamic SPF and on the sensitivity of SPF
error on the MSE results.
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