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Abstract—A self-healing function is an attractive feature in any
modern microgrid (MG). Once a fault occurs it is imperative for
a grid to monitor its status, take action based on the level of
severity, and after the contingency has been cleared, restore the
system. With an increasing number of microgrids and distributed
generation stations, deploying a centralized control is no longer
a cost-effective option, and therefore distributed control is a
likely solution. In an interconnected network it is important
to detect the underlying events taking place in each of the
distributed stations, otherwise operational decisions become non-
coherent. This paper proposes a novel, feature selection-based
distributed machine learning approach to detect the dynamic
signatures of different power system events. The purpose is to
facilitate a post-fault decision-making process in order to restore
a stand-alone microgrid without the intervention of a central
station. The proposed method detects meaningful features from
the generator data and then applies a multi-class classification
algorithm to the feature data. Each class represents one dynamic
event taking place. The methodology is demonstrated in an
interconnected two-area-based microgrid with multiple types of
energy generation schemes.

Index Terms—Self-Healing, distributed control, feature selec-
tion, machine learning

I. INTRODUCTION

The self-healing feature in a microgrid is a part of the
control and operation scheme that introduces a degree of
automation [1]. The advent of Phasor Measurement Units
(PMU) has improved Supervisory Control and Data Acqui-
sition (SCADA) in recent years. It has also enabled new
possibilities in the field of protection and stability analysis, that
eventually lead towards self-healing [2]. Through a framework,
autonomous systems can be deployed in an interconnected
network to maintain system reliability [3]. However, an end-
to-end system configuration, which can deploy self-healing
mechanisms, may require multiple layers of decision-making
processes. These can be represented as a hierarchical, three-
tier structure. The bottom layer is placed near each measure-
ment device close to the physical system. The middle layer
is intelligence at the substation level and the top layer is
the centralized command and control operations undertaken
by engineers [4]. The deployment of an immediate control
scheme in the bottom layer is considered a well-established
strategy to address and solve contingencies locally, without any
intervention from the central station. The sole purpose of such
an action is to reduce costs and increase speed of operation.
The goals of reducing costs and resources have motivated
recent authors to explore local decision-making methods [5]–
[9]. In [5] a novel sectionalized self-healing approach was

introduced, featuring a sectionalized grid system to mitigate
energy distribution problems. The objective set by [5] is to
guarantee supply and demand balance in each subsection,
either by adjusting the power output from the dispatchable
sources or by shedding loads. The article proposed a rolling-
horizon optimization method in order to schedule the outputs
of the dispatchable distributed generators (DGs). The proposed
method has significant merit; however, the article assumes that
the self-healing process does not give rise to any dynamic
stability issues, which often is not the case [10]. On the
contrary, power system stability relies heavily on the dynamic
behaviour of the generators. In [6] the authors argue that
system instability can be assumed by observing the dynamic
behaviour of the generators. In other words, the development
of an automated algorithm should rely on the idea of low-level
machine control.

Recent literature also suggests that local or distributed
control is quite dependent on the identification of dynamic
events under different contingencies. An appropriate detection
of power system events can lead to smart restoration strategies
[1], [2], [6], [11]. This study integrates the concepts of both [5]
and [6] and introduces a novel algorithm that detects dynamic
events from the distributed generator data in a sectionalized
microgrid. The dynamic events are associated with the self-
healing process of the microgrid used in this study. The
algorithm interprets the dynamic events and decomposes those
into user-specified regions to facilitate decision making in the
context of restoring an unstable power system. The proposed
algorithm has the capacity to detect patterns in the dynamic
data and distinguish the data based on the underlying events.
Once the underlying event in terms of the affected generator is
recognized, the algorithm can take local decisions on each of
the generating stations and restore the system after a major
fault. The algorithm is installed in each of the generating
stations, which are independent of each other, but can make a
coherent decision in a post-fault contingency. In the proposed
system, two types of non-dispatchable energy sources is in-
troduced; wind and solar. The proposed method is based on
a machine learning algorithm which is a modified ensemble
of bagged decision trees with an added Boosting mechanism.
The algorithm uses the generator data collected from the
aforementioned grid. For a better prediction, the generator
data is augmented using a simplified feature selection process.
The purpose of the feature selection process is to prepare
the data set for increasing the accuracy of prediction [12]–
[14]. However, some of the major concerns regarding feature
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selection are high sensitivity to tuning and added redundancy
in the algorithmic steps [15]. For these reasons, additional
algorithms for improving relevance and removing redundancy
go hand in hand with any feature selection process [12].
Solving such challenges would require more resources and
would be a time-consuming process to enable data preparation;
although this is very important it is unnecessary to address
it in a near-real-time application . This study considers an
alternative approach, avoiding feature selection in real time
by implementing a pre-processed set of input features [14].
The relevance and effectiveness of these features are discussed
in the later sections. To develop, train and test the proposed
system a two-area-based microgrid was prepared in Matlab-
Simulink. The overall contribution of this study can be sum-
marized as:

1) Developing a feature selection-based machine learning
algorithm that detects dynamic events in a stand-alone
and self-healing microgrid.

2) Exploring the potential of feature-based augmented
datasets, to enhance the predictability of a multiclass
classifier algorithm for dynamic time series data.

II. SYSTEM UNDER CONSIDERATION

The microgrid chosen for this study, as shown in Figure-
1, is a two-area system that operates in stand-alone mode.
It is a multi-machine system suitable for stability analy-
sis. The purpose of selecting a multi-area microgrid is to
separate the system into sections in the event of a fault
and apply distributed control. To facilitate such distributed
control, each area is equipped with both dispatchable and non-
dispatchable distributed generators (DGs). For dispatchable
generation three diesel power plants and one hydro power
plant based on synchronous generators are considered. The
unit local controller in each DG adopts real power frequency
and reactive power voltage droop control. For non-dispatchable
energy generation, a wind power plant based on an induction
generator is considered. Two types of loads are considered;
controllable and uncontrollable. Each of the power plants is
connected through a medium voltage transmission line of
25kV. The hydro power plant was chosen to cater for the
base loads while the diesel power plants address the time-
varying loads. The scheduling of the diesel generators was
assumed to be based on the availability of renewable energy
as well as the demand. The asynchronous generator in the
wind power plant has a shunt compensator connected to its
node. During high wind power penetration a large inductive
load is disconnected from the microgrid. This event triggers
a system-wide rotor angle instability due to the generators
swinging against each other [16]. The wind turbine is operated
at a 94.87% capacitive power factor. Figure-2 shows one
illustrative, arbitrarily chosen instance of a 3-second window
of post-disturbance rotor angle instability [8], [17], [18]. A
3-second window contains 150 samples. Due to the rotor
angle instability the transmission line voltage fluctuates. The
proposed algorithm eliminates the rotor angle instability by
understanding the dynamic signatures in the generator data and
stabilizing the voltage fluctuation in each location, dEG

dt → 0;

EG = Generator terminal voltage. The microgrid used is
similar to that in the studies carried out in [7], where a post-
fault restorative control scheme is discussed.

Like [5] the system is designed to have both a normal
operating mode and a self-healing mode. The self-healing
mode consists of series compensators (SCs) in both areas
near the synchronous generators. The post-fault contingency
is considered as a first swing stability problem, which can
be damped using a linear continuous control. From each
distributed controller’s point of view the grid is a single ma-
chine infinite bus system; thus, the active and reactive power
transmitted through the transmission line can be modelled
as Pi = V 2 sin δ

(1−k)X and Qi = 2V 2

X
k

(1−k)2 (1 − cos δ). Here
i is the distributed generator, X is the line inductance and
k = Xc

X ;Xc = series capacitance. Once the proposed algo-
rithm detects an instability it operates the SCs and damps the
oscillation. For simplicity the compensators are considered to
have two modes; Bypass Mode for damping the oscillations in
a post-fault scenario and Blocking Mode for normal operations.
Once a post-fault rotor angle instability is identified, the SC
closest to the most affected generator is switched to Bypass
Mode, to suppress the oscillation and stabilize the system. The
SC is then returned to Blocking Mode after the system has been
restored [19].

Figure 1. The microgrid model

The model in Figure-1 mostly serves the purpose of gener-
ating time series data to train and test the proposed algorithm.
The system uses the droop control method for maintaining
the frequency and voltage magnitude. The reactive load-
sharing capacity of a droop controller largely depends on the
feeder impedance. By making the feeder impedance mainly
resistive, the aforementioned instability can be introduced. The
contingencies are applied in four different locations in close
proximity to the four synchronous generators. The proposed
distributed method then identifies the generator most affected
by any fault and takes relevant action to mitigate it. The
algorithm validates the action (decision) by identifying the
event that follows. In this study the pre-fault and post-fault
events are categorized based on their transient, sub-transient
and steady state characteristics.
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Figure 2. High fluctuation in rotor angle due to a critical fault

III. PROPOSED METHODOLOGY

The overall workflow of the algorithm in each of the
distributed platform, is shown in Figure-3. The algorithm is
implemented in a distributed platform at four different gener-
ating stations. The workflow shown here, works independently
in the distributed locations. It starts with a data preparation
stage where a Monte Carlo-based simulation is carried out
with the four fault locations near to the wind power plant,
solar plant, hydro and diesel power plants. The process is
followed by the preparation of a dynamic response database.
The database contains the pre-fault, during fault and post-fault
dynamic responses of each generator. The feature extraction
stage follows, to extract some predefined features and augment
the dataset for training machine learning algorithms placed
near each of the generators. Once the training process is over
the algorithm is evaluated with a new set of randomly chosen
datasets.

Figure 3. Workflow of The proposed algorithm in each of the four generating
stations. This workflow is implemented independently in four locations.

A. Data Preparation

The data preparation stage does the data selection and the
feature selection shown in Figure-3. In order to develop the

system dynamic response database from the generators, 250
simulations were carried out with randomly selected wind
generation and demand for each of the four fault locations
as shown in Figure-1 resulting in a total of 1000 different
scenarios. For example, the random scenarios relevant to the
wind power plant were created with a mean wind speed of
10m/s, and a standard deviation of 1m/s. This study only
considers scenarios where rotor angle instability emerges after
a major fault.

The feature selection mechanism adopts the concept pre-
sented in [20]. The method implies that it should be agnostic
to use machine learning for modelling; it should account for a
streaming dataset; and it should be scalable to support a large
number of events. However, unlike [20], this study implements
a fixed feature set to eliminate dependency on any wrapper
(different models for different subsets) or filter methodology
for feature selection. As the system analysis is largely based
on post-fault data, non-linear mapping functions, which are
mostly required for load and price signals, can be avoided
[15]. Thus a predetermined feature set can be considered.
As the time constants of MGs are relatively smaller than
those of a high voltage system, generator parameters were
carefully considered to select the appropriate features [21]. To
produce the generator data a conventional differential algebraic
equation-based model was used [22].

This study carried out multiple simulations based on the
above principles by randomly varying the wind power and
demand while considering four probable fault locations. The
overall process of damping the rotor angle instability is men-
tioned in [7]. However, unlike [7], a supervised control scheme
was not implemented; rather the study relied on primary con-
trol, secondary control and appropriate series compensation.
For simplicity, only cases where oscillation was completely
damped were considered as valid candidates for training the
machine learning system. Analysis of the undamped scenarios
was regarded as out of scope and not undertaken.

To establish a relationship between the generator model and
the constant impedance load model, classical energy functions
were used [14];

Mi
d2δi
dt2

+Di
dδi
dt

= Pi−
m∑

j=1,j �=i

(Cij sin δij+Dij cos δij) (1)

Where, m is the number of synchronous generators. δ i

is the rotor angle of the i-th generator. C ij and Dij are
the function of transfer conductance and susceptance of the
reduced network. The per unit inertia constant of each of these
generators is H = 1

2Mω, where ω is the synchronous speed.
The dynamic data produced from the generators was se-

lected based on a multi-band power system stabilizer (PSS)
model for the hydro power plant and a traditional PSS model
for the diesel power plant. The parameters are rotor speed ω,
rotor angle deviation dδ, reactive power generated QE and
terminal voltage EG [23], [24].

Parameters are represented in per unit . Those generators
and consumers not close to the vicinity of the fault are kept
constant during the period when a transition between two
events is taking place.
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B. System Dynamic Responses

The proposed algorithm implements a simplified feature
selection technique for data preparation and applies multiple
machine learning algorithms in order to detect underlying
events from the time series data. The method is initialized by
preparing a database of the system dynamic responses. Four
attributes namely: generator rotor speed ω, rotor angle devi-
ation dδ, reactive power generated QE and terminal voltage
Eg were chosen for preparing the database [6], [16], [18].
The rotor angle deviation was measured against the center of
intertia (COI) angle;

δCOI =

∑n
i=1 Hiδi∑
i = 1nHi

(2)

δi is the rotor angle and Hi is the inertia constant of the
i-th generator.

The system dynamic response is characterized by different
events taking place in the proposed two-area-based system.
The events are divided into nine different categories. The
categories or events are based on the transient, sub-transient
and steady state behaviour of the pre-fault, during fault and
post-fault system states. Two events are associated with the
pre-fault state, one event identifies the fault, three events are
associated with the post-fault state with classification errors
and the remaining three events are associated with the post-
fault state without classification errors. For each of these cat-
egories or events, generator data was collected from different
power plants and stored as a matrix of time series databases.
Considering tn is the length of time and m is the number of
generators, the attributes of the classification algorithm there-
fore become m data points ranging from (tn, E1, Q1, ω1, dδ1),
(tn, E2, Q2, ω2, dδ2) to (tn, Em, Qm, ωm, dδm).The duration
of the fault was kept uniform. It was just long enough to
introduce a rotor angle instability in the system. However, the
length of post-contingent scenarios are not uniform; rather they
were chosen based on the time required to achieve system wide
stability. This measure was taken to monitor whether a loss of
synchronism appears before initiating the next event.

A power system is often interrupted by uncertain events
such as three-phase faults. Once the fault is cleared, the
system has to be restored and operated at its optimal target
configuration. The actual method of system restoration is
a well-established research domain that consists of expert
systems, mathematical programming and heuristics, as well
as soft computing e.g., [11], [25]–[28]. The primary focus of
this study is not to analyze different restoration mechanisms,
but rather to accurately detect the underlying events and
properly categorize them using an automated system. This
study assumes a soft computing-based (machine learning-
based) system restoration mechanism as discussed in later
sections.

The nine events are briefly explained below. Figure-4 shows
six time-varying dynamic events out of those nine events.

1) Starting the generators: In this state the transient and
sub-transient phases of the generators during start-up are
addressed.

2) Stable operating point after start up: This is the pre-fault
stable operating point. Once the system reaches this state
the experiment is considered ready for the introduction
of faults.

3) Introduction of the fault: A large reactive power mis-
match is caused by disconnecting a large inductive
load. This state lasts long enough so that a rotor angle
instability, and in turn, a high amount of power swing,
can be introduced.

4) Fault clearance and post-fault transient state: In this state
the fault is cleared and post-fault transience is observed.
The SC is kept in bypass mode (damping mode) in the
transmission line.

5) Post-fault stable operating point: The steady-state oper-
ating point after clearance of the fault.

6) Transition towards the initial stable operating point:
Once the post-fault system becomes stable the operating
conditions are reverted back to the normal pre-fault
operating condition. This event represents the transition
from the post-fault stable operating point towards the
initial restoration states. This state is similar to the sub-
transient state of the machine initialization phase.

7) Restoration of the initial stable operating point: The
stable operating point equivalent to event-2.

8) Fault clearance and post-fault transient state: In this
state the fault is cleared and post-fault transience is
observed. The SC is kept in blocking mode (undamped)
in the transmission line. It is a post-fault scenario with
misclassification.

9) Transition towards the post-fault stable operating point
to reach the post-fault stable state or event-5. The SC is
kept in blocking mode (undamped) in the transmission
line. It is the other post-fault scenario, with misclassifi-
cation. Event-7 follows both the event-4 (properly clas-
sified decisions) and event-8 (misclassified decisions).

The duration of each of the events may vary depending
on the operating conditions of the microgrid. In general,
most of the events are longer than one second. During any
transition state the later parts become relatively more stable.
Thus identification of that half becomes comparatively less
challenging due to the reduced variation in data, and also
becomes less effective for identifying features. Therefore, to
reduce the computational burden, only the attributes exhibiting
certain variation in data that exceeds a pre-defined threshold
are filtered and sent for feature selection. The rotor speed
deviation dω is chosen for preparing this threshold. The
crossing of the threshold value is observed for a period of
60ms. In other words there are three consecutive data points
Δωi = ωi − ωi−1; (i ≥ 2).

C. Selected Features

Harnessing information from magnitude and frequency of a
signal, has been a well established technique in understanding
power quality. Therefore, different signal processing tech-
niques were introduced to understand power quality issues in
numerous studies [29]. Scientific analysis in other disciplines
such as Electroencephalography, signal processing is often
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Figure 4. Generator data under different dynamic events. The horizontal axis
shows total number of samples (50 samples/second)

implemented to detect events from analyzing the shape of
action potential measured in millivolts [30]. The key argu-
ment observed in those studies is that, signal shape contains
valuable information. This study is also motivated by a similar
argument.

After the attribute had been selected, a layer (in the form of
attribute columns) of features was added, in order to augment
the data to improve predictive capabilities [31], [32]. All the
features are normalized to make the overall process generic for
different wind power sources and demands. The augmentation
is carried out based on three selected engineered features.
Based on the shape of a time-series data, these features have
the potential to understand an underlying event. The features
are:

1) Prominence of local maxima.
2) The width of the local maxima
3) Available frequencies in the time series data
From each of these features, in the next stage, a factor is

developed, in order to represent those features as attributes.
The attributes are then used to augment the training dataset,
to train the machine learning algorithm. The factors, ob-
tained from these features are scalar quantities. The factor
derived from the prominence of local maxima is mentioned
as prominence factor. The factor derived from the width of
the maxima is called width factor. And finally, the factor
derived from available frequencies is called the frequency
factor in this study. The development of those factors have
been further discussed later. The first feature is based on
understanding local maxima. It is important in this study,
because, the characteristics of local maxima in a data set
can carry valuable information [33], [34]. Time series data
is composed of different frequencies and amplitudes. The
characteristics of those amplitude peaks varies, on the basis
of the event taking place at a certain period [35]. Dynamic
phasor data obtained from an MG exhibit similar amplitude
and frequency variations. This is the primary motivation for
selecting the 1st and the 2nd feature. To select a range in the
subject signal, a 1-second window was prepared. The window
slides 20ms in each iteration, meaning that after every 20ms
one data point was recorded. During the process of calculating
features, this 1-second window slides 1-data sample on its
right and leaves a data sample on its left, always keeping 50-
samples in between. A 1-second window is large enough to
retain the features, and small enough not to be corrupter in
the transition phases between two events. Further justification
for selecting a 1-second is provided later.

As the initial selected feature in the data set, a topographical
prominence was chosen. The method followed here is based on
the work presented in [36]. The 1-second time series window
is first normalized. Then the lowest contour line circulating a
local maximum point is detected and the height of that point is
measured in terms of that contour line. The second engineered
feature is the length of the contour lines. It signifies the width
of individual peaks.

Figure-5 shows the method for finding prominent local max-
ima and width of local maxima. For a better visualization, a 2-
second window of the terminal voltage of the generator in hy-
dro power plant (generator-1) has been chosen. However, while
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preparing the actual algorithm, always a 1-second window had
been used. Figure-5 represents the prominent local maxima in
volts per unit. The width of local maxima has been calculated
from the nearest lowest point that encompasses the maxima,
shown in the horizontal axis. In the figure, it is observable
that local maxima can be of different characteristics. These
characteristics can be harnessed as valuable information. The
overall process applies Getis and Franklin’s (G&F) variation
of Ripley’s K-function rather than a height threshold. The aim
is to determine the number of localizations, n, in the 1-second
data window or the region of interest (ROI). If K(r) j is the
Ripley’s j-th K-function and δij is the Euclidean distance
between localization i and localization j, then;

K(r)j = A×
∑n

j=1 δij

n
(3)

Here, A is the area of the ROI and r is the radius around∑
n

i=1
δij

n , keeping the localization j in the center. It means
K(r)j represents the local signal amplitudes in relation to the
average signal amplitude over the whole ROI, which in this
case was considered to be the of the peak prominence. The
K-function is normalized across its variance and L-function
is developed. The diameter 2 × r signifies the width of the
localization j, thus the width of local maxima. The L-function
and the width of a local maxima has been further processed
to develop prominence factor and width factor. The process is
explained later with examples.

L(r)j =

√
K(r)j
π

(4)

One of the main ways of understanding power system
oscillations is frequency spectrum analysis. Due to the spatio-
temporal nature of power system dynamics, frequency spectra
can develop valuable features [37], which can be helpful
not only for understanding inter-area or intra-area oscillations
but also for analyzing voltage flicker, as has been done in
past research [38]–[40]. The third chosen feature is therefore,
derived from the available frequencies in the 1-second data
window. A discrete Fourier transformation (DFT) is used for
this feature;

x[n] =

N−1∑
n=0

1

N
X̃[k]e−jk(2π/N)/n,K = 0, 1, ....N − 1 (5)

Here, X̃[k] is the amplitude and x[n] is the linear combina-
tion of the complex exponentials with that amplitude. DFT has
often been used in the field of harmonics and power quality
analysis [41]–[43]. In this study, a frequency spectrum of the
first 20Hz was chosen to analyze the voltage fluctuation. To
convert this information into a feature, sum of the absolute
amplitudes, |x[n]| in Equation-5, where n = 1, 2, 3....., 20 was
calculated. It is henceforth mentioned as the frequency factor.
The frequency factor is derived from the amplitudes, it has no
unit.

FrequencyFactor =

20∑
n=1

|x[n]| (6)
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Figure 5. (a) Prominent peaks and their widths inside a predefined data
window of the terminal voltage of generator-1. The prominence is presented
in volts P.U. (b) The top three peaks, that has been observed in the above
data window. The horizontal axis in the bottom sub-figure quantifies the top
identified peaks in this example (which is three, in this data sample).

The commercial availability of phasor measurement units
has made it easier to store power system attributes at a
rate of 50 samples/second or higher. Here, a sampling rate
of 50 samples/second was chosen, and thus, based on the
“Nyquist–Shannon sampling theorem” the DFT could be car-
ried out up to a frequency of 25Hz. Therefore, 1-second is
sufficient to capture the frequency spectrum in one event.
However, in the proposed microgrid it was observed that
any frequency more than 20Hz had little to no contribution
in calculating the frequency factor. Therefore, the proposed
frequency feature is calculated based on frequencies up to
20Hz. Based on the above argument, as mentioned in earlier
sections, a window size of 1-second was chosen. Another
motivation for selecting a 1-second window length was to
retain enough distinction between different events. In the
proposed microgrid, some of the observed events are no more
than two seconds long. Therefore, the frequency features in the
transition windows (from unstable towards stable responses),
are more likely to be corrupted. The top sub-figure (6a) of
Figure-6 shows a comparison between three events under dif-
ferent window sizes. Overall six window lengths (1-6 seconds)
have been chosen for this part of the analysis. For each of
the window lengths, frequency factors have been calculated
for three different events (event-1,3,6). From the figure it is
observable that, with different lengths, the frequency factors
vary significantly for the same events. The larger the window
size, the more corrupted the events become. For example,
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being a relatively stable event, event-6 should mostly exhibit
a lower value of frequency factors. However, as the window
size increases, in the transition phase of event-6, the frequency
factor gets corrupted.

The bottom sub-figure (6b) shows a transition window be-
tween two events. From the figures it is quite comprehensible
that if the data window length increases beyond a certain
point, the possibility of identifying distinct features decreases,
because characteristics from different events merge.
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Figure 6. (a) Frequency factor at different window lengths. The frequency
factor is represented as the sum of magnitudes, it has no unit. (b) Transition
Between Two Events (Event-7 and Event-8). If the data window size increases,
the transitional region can merge characteristics from both the events and
corrupt their features.

To provide justification for those features, a randomly se-
lected sample data set from three different events was prepared
as shown in Figure-7. The chosen attribute was the terminal
voltage of generator 1. The figure consists of the samples
collected from three events Event1, Event3 and Event9. It
can be seen that different events, despite having similar
overlapping magnitudes, exhibit different characteristics in
their signal peaks, widths (Figure-7(a)) and amplitudes of the
available discrete frequencies (Figure-7(b)). This justification
is reflected in Table-I, where the features, summarized as
factors, are shown with respect to different events.

For a better understanding of K(r) and L(r) parameters,
the aforementioned sample data set as shown in Figure-7 was
used. To show the calculation process for peak prominence and
width, the Event1 marked with a black line was considered.
Firstly, from any local minimum i to the next local minimum
i+1 a total of n = 40 samples were selected. The distance
26.002 observed in the X-axis of the data window, between i
and i+ 1 is considered as the diameter of the peak. Area A,
530.92 is then calculated based on this diameter. The average

height

∑
n

j=1
δj

n of the i-th peak is calculated by summing
the height of each sample 0.82, 0.83, ... 1.044, ...0.82 and
dividing it by n = 40, which is 0.4765. Once the area and
average height are found, K(r) = 253.90 and L(r) = 8.99 are
calculated using the above-mentioned formula. Each data win-
dow can produce multiple L(r) values. From those multiple
L(r) values the factor representing prominence (prominence
factor) is calculated by taking an mathematical mean of all
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Figure 7. (a) Sample data, representing three different events. These sam-
ples are used to show the different features available in those events. (b)
Amplitudes obtained from a data window, after carrying out discrete fourier
transformation (Eqn-5).

the available L(r) values in that window. Width of the local
maxima is calculated from the diameter 26.002. To prepare
the width factor, maximum width available in a window was
selected. A similar data set shown in Figure-7 had also been
used to calculate the frequency factors by adding all the
amplitudes obtained from DFT of the first 20Hz frequencies
in one data window. This process was used to calculate the
frequency factors. The feature value with the first 25Hz
frequencies is 6.8567, which is almost equal to the factors
observed from the first 20Hz frequencies.

The necessity of preparing different factors, from the fea-
tures, is quite intuitive. As mentioned earlier, while extracting
the features, each data window is sampled with 50 data
points per second, representing one measurement every 20ms.
However, to train a machine learning algorithm, so that it can
identify the underlying event, each of the windows has to be
represented as a single row of attributes at any given time.
The transition of the data window can thus be considered
as a transition of events either from event i to event i or
from event i to event j. From a matrix point of view, the
transition of windows means, the transition from one row to
the next. In other words, each data window is a row in the
training data matrix and the factors are individual attributes in
that row. Therefore, an additional action to prepare factors
had been taken. This action of preparation of the factors,
was carried out in three different ways. For the first factor,
a mean value of all the available peak prominences in a data
window was selected. This is mentioned as the prominence
factor. For the second factor, the maximum width among the
local maxima was chosen. This feature is mentioned as the
width factor and for the third feature, summation of amplitudes
obtained from the DFT of the first twenty frequencies was
considered, known as the frequency factor. Thus a range of
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50 data points is converted into one data point identifying the
feature characteristics of that particular window in a single
row of data. Table-I was prepared using the above mentioned
factors from the sample dataset.

The intention of the feature selection and data augmentation
is to provide additional information to the classification algo-
rithm. In this way significant differences can be seen between
two time series data sets that have a high degree of similarity.
For example parts of Event-3, Event-6 and Event-9 are shown
in Figure-8. Along with that, the parts of comparatively more
stable events, Event-2, Event-5 and Event-7 are also shown. It
can be observed from the figure that, the similarity between
these factions is very high for proper classification to be
carried out by using the traditional classification methods.
Besides, with varying wind power, solar power and demand
these similar events overlap each other, which makes it difficult
for a machine learning algorithm to gain adequate information.
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Figure 8. Similarity observed in the time series data among multiple events.

However, adding the feature space to the original data set
brings new information to the classifier algorithm with respect
to an individual event, as shown in Table-I. The addition
of such information helps to reduce classification error and
improves the performance of the classification algorithms. This
hypothesis is further analyzed, tested and explained in detail
in a later section Testing the Overall Hypothesis.

D. Multiclass Classifier

A multiclass classifier can be an algorithm or a set of
algorithms that can predict more than two data classes. To
solve such problems, researchers often use ensemble decision
trees, sometimes also referred as the random forest. A random
forest algorithm uses multiple decision trees and regression
techniques, on multiple sub-sets of a training dataset. In this
study, once the data preparation stage was over, a multiclass

Table I
FEATURES (EXTRACTED AS FACTORS) OBSERVED IN THREE SIMILAR

EVENTS

Event Width Factor Prominence Factor Frequency Factor
1 26.002 8.93 6.8565
3 33.47 0.94 4.0348
6 47.83 0.042 0.6782
9 4.59 0.001 0.946

2 56.43 0.00035 0.008
5 77.02 0.00001 0.00197
7 109.52 0.00001 0.00111

classifier, which is an ensemble of bagged (bootstrap aggre-
gation) decision trees, was trained as shown in Figure-10.
Bootstrapping, divides the training dataset into n-number of
smaller sets with sample replacement, in order to train n-
number of base classifiers. After training, each of those base
classifiers votes for a class. The weights of all the votes are
then considered in developing one improved composite model,
which significantly increases the accuracy of classification [6],
[32].

The key advantage of using bootstrap aggregated or bagged
classifier is that it enables a linear combination of the function
estimates. Based on the different sets of predictor variables and
their estimates, the input data is weighted and re-weighted. For
example; a function estimate ĝens =

∑M
k=1 ckĝk(.) is obtained

based on the k-th re-weighted data with a combined linear
estimation co-efficient ck. This method is helpful in addressing
the issue of classification error due to estimation variance and
statistical bias, especially in a stochastic scenario [44]. Bagged
decision trees are, therefore, not pruned and are longer, which
helps the ensemble method to improve accuracy by combining
a number of low-biased sub-models. For example, in [40] an
ensemble of decision trees was used on PMU-based post-fault
rotor angle data, to predict catastrophe in a wide-area power
system. The implementation of ensemble trees improved the
accuracy of the prediction by more than 20%, compared to a
single decision tree.

However, the accuracy of classification or prediction of
such an approach, depends heavily on the number of trees.
Figure-9 is shown as a proof of concept, where the mean
classification errors with different numbers of trees is made.
The idea behind this experiment is to show that, increased
number of trees can improve classification accuracy. 100 test
cases were used for this proof of concept. Each line represents
the performance of the proposed algorithm in each of the four
power plants. All the algorithms have been fed similar type
of data obtained from four different generators. The fault was
placed near the hydro power plant and the data of Event-4 was
used as the target attribute. Once the use case was prepared,
the classification error of the algorithm was evaluated and the
moving average of the error was plotted against the number
of trees. The figure indeed portrays that, with an increased
number of trees, mean classification error decreases. It was
also observed that, if more than 100 decision trees are chosen
for the algorithm, accuracy reaches towards a saturation point.

Therefore, based on the above analyses the ensemble was
prepared using 100 fully grown trees by splitting the attribute
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Figure 9. Analysis on classification error vs number of trees. With an
increased number of trees, error decreases in all four locations

data into 100 training sets, D1, D2,...,D100 in order to obtain
an improved composite model. M i(1 ≥ i ≥ 100) classifiers
vote by predicting a class and the ensemble selects the
final class from those votes. The overall technique includes
Bagging and Boosting. The Boosting process works in a
sequence by considering previously generated classification
errors and rectifying those [6], [12], [31], [32]. The classifier
is implemented on each of the four synchronous generator
data sets. Different contingencies have different durations and
thus different dynamic signatures. However, some degree of
similarity is present in the dynamic events presented in this
study, which affects the process of identifying classes. That
is why, unlike [6] and [32], in this study a new scheme of
multiple ensemble trees was used to significantly improve the
scalability of decision trees.

In this method, using the four attributes of rotor speed
ω; rotor angle deviation dδ; reactive power generated QE ;
and terminal voltage Eg, and three features for each of the
attributes, three different ensembles of bagged decision trees
are trained. Each ensemble then is used to predict the events
and an array of predicted events is prepared. The data is then
analysed using a simple statistical mode operation and the
most frequent prediction in each instance is considered as the
final predicted event. This approach has the ability to reduce
error while predicting the underlying event. The idea of using
the statistical mode is to strengthen the estimation process
by incorporating different dynamic responses observed in a
synchronous generator. The results are shown in the following
section. Figure-10 shows the overall process of preparing the
ensemble tree [45]. Hypothesis testing with a limited dataset is
discussed in the following section in order to test the proposed
method.

E. Testing the Overall Hypothesis

The overall hypothesis in this study is that different data
types, with their inherent features, can significantly differenti-
ate the aforementioned events. The proposed algorithm suffers
most during the transition periods from dynamic state to steady
state, because the features become less distinct. However,
if different data types are used to prepare the features, the
accuracy of the ensemble method increases. The idea of using
a statistical mode is to filter out the classification errors in

Figure 10. Preparation of the multi-class ensemble trees [6], [45]

one data type by using the results obtained from the other
data types.

For example, rotor speed, terminal voltage and reactive
power are dynamic in nature and each of them produces simi-
larities between different events at certain durations. However,
all of these are not similar at the same data points. Thus
if the classifier using rotor speed introduces a classification
error, the other classifiers can mitigate that because of their
own features. Figure-7 shows the data sample chosen from
the terminal voltage of one of the diesel generators for testing
the hypothesis.

The hypothesis advocates for feature extraction in order
to improve the performance of the classification algorithm.
The proposed m × 3 feature matrix introduced in the earlier
section is considered individually irrelevant. The decision tree
algorithm recursively tests the attributes and partitions the
dataset Dt containing scalar values into two or more interior
nodes Dt1, Dt2. Here t is used to represent a continuous data
set representing one window. Each interior node D ti is defined
by a range query such as thresholdi ≤ Dti ≤ thresholdi+1.
However this query range cannot give an appropriate split
if the time series data available shares similar values for
different classes. Figure-7 is such a time series data set.
Where it is clearly observed that, different events have partly
similar voltage magnitudes. However, adding the predefined
distinct features that represent an individual class helps to
eliminate this condition. For clarity, a fictitious example is
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provided in Figure-11. The example dataset, plotted in a 2D-
plane, has three classes. The intension here is to show that, if
feature extraction is used the algorithm reaches the end node
(representing only one class) with higher accuracy in fewer
steps. On the other hand, without the use of feature extraction,
the algorithm reaches the end node with a larger number of
steps. The classification error is also high. To demonstrate
that, three classes are shown using three colors, yellow, blue
and green. The underlying objective is to classify the green
class (class-1). In this demonstration two branches from two
different trees have been considered. Tree on the left hand
side uses shapes (height, width) as features, where the tree on
right only uses position of each data point in the X-Y plane.
The first data set in any branch is called a root node, and the
consequent node obtained from any split is called an interior
node (here, only one interior node is shown after a split, as
the underlying objective is just to reach any one leaf node that
identifies the green class). The interior nodes are also known as
non-leaf nodes, where a data set is divided based on a threshold
observed in an attribute. The final node that makes a decision
or classifies a data set is called a leaf node. As the features
are used, the branch of the tree represented on the left hand
side reaches to a pure green-class without any error only after
two steps (interior node-1, leaf node-1). Despite having some
similarities in the position of different data points the features
helped gaining more information in each split. While on the
right hand side, the branch of the other tree that does not use
feature, reaches to an impure green class in three steps. The
additional split could not ensure higher accuracy in the later
case, rather one misclassified node (yellow dot with red circle)
remained. The shape or the feature is increasing information
gain.

Figure 11. Classification with and without features (fictitious data). Only
the decision-paths of the trees that proceed towards root to leaf (Class-1)
have been shown here. Other paths have been ignored in this visualization.
Misclassification is represented using a hollow red circle.

To further understand the rationale behind the proposed clas-
sification approach, a concept called decision node impurity is
invoked. When the decision tree splits a data set, the node
impurity indicates how well the classes are separated. If, in a

particular node, all the data points belong to one class without
any classification error, then the node impurity is 0 or the node
is considered pure. in Figure-11 the algorithm with feature
augmented data reaches a pure leaf-node, while without feature
augmentation it reaches to an impure leaf-node.

Figure 12. Classification without and with features. The upper tree only uses
the time series voltage data T1, the lower tree uses three features along with
the time series data. Here, Freq = frequency factor and Wid = width factor
as shown in Table-I

Furthermore, in Figure-12 two instances of classification
processes with the same data set are presented. This data set is
shown in Figure-7. The upper tree is based on only the time
series data (terminal voltage of generator-1), and the lower
tree is based on the augmented features observed in Table-I.
In preparing the upper tree generator terminal voltage (P.U.) is
used, denoted as T1. While, for the lower tree, terminal voltage
(P.U.), denoted as T1, frequency factor, denoted as Freq, width
factor denoted as Wid and prominence factor have been used.
The lower tree that uses features is clearly outperforming the
upper tree in number of splits or steps. The upper tree takes
higher number of steps. As the upper tree is growing larger
than the lower tree it is less efficient. In order to further
understand how the tree with feature data is performing better,
a determination of goodness of split is carried out.

Δ = IRoot −
k∑

j=1

N(vj)

N
I(vj) (7)

where Δ is the information gain; I(Root) is the impurity
of the root nodes; N is the number of root nodes; k is
the number of attribute values; and N(vj) is the number of
interior nodes. The evaluation process measures impurity in
order to understand the information gain. The information
gain of classifying the first event (Event1) was 7.283% for the
process without the features and around 26.87% with features.
It shows that adding meaningful features reduces impurity. The
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Table II
COMPARISON IN ACCURACIES FOR Event1, Event3 and Event9 IN PERCENT

%

Event-1

Generator Proposed CART ANN K-NN
1 99.8949 89.4529 < 30 93.2276
2 99.8603 89.7265 < 30 93.5394
3 98.9123 89.3287 < 30 90.6113
4 95.7268 92.4601 < 30 95.4763

Event-3

Generator Proposed CART ANN K-NN
1 99.6636 87.3372 < 30 90.0813
2 99.6765 87.52398 < 30 91.5239
3 99.6042 88.4577 < 30 92.1306
4 97.9386 89.6389 < 30 93.9854

Event-9

Generator Proposed CART ANN K-NN
1 97.1287 81.0249 < 30 89.8023
2 97.1146 84.2273 < 30 91.2254
3 97.5543 79.4611 < 30 93.1175
4 95.2584 73.7433 < 30 94.0028

comparison is done based on the first three interior nodes. The
impurity was then calculated based the equation shown below
for each of the root and interior nodes [44], [46], [47]. In the
equation, Ni is the node impurity, Ctarget is the number of
samples representing the target class and Ctotal is the total
number of samples those are available in the interior node.

Ni =
Ctotal − Ctarget

Ctotal
(8)

For example, if in a interior node the observed C target is 50
samples of event-3 and in the same node Ctotal is 100 samples
of event-3 and event-9, then the node impurity is 50%

IV. RESULTS

The proposed method was then examined and compared
using a test data base. The test database was prepared by
randomly distributing the events. The test set contains 400×9
events scattered over the time frame. To test the robustness of
the algorithm, a normal random noise was also added to the
attribute data. The random noise had a mean of 0 and standard
deviation of 0.01 P.U. Table-II shows the accuracy of the
algorithm in detecting the dynamic events in each of the four
generating stations. Table-II also shows a comparison between
the performance of the algorithm and three other traditional
machine learning-based methods: a classification and regres-
sion tree (CART); an artificial neural network (ANN); and a
K-nearest neighbour algorithm. It is observed that a significant
improvement can be achieved if features are introduced to the
time series data that can add a distinct attribute characterizing
each of the underlying events. Classification errors mostly
occur during the transition between one event and another
event, especially when the system is achieving stability. This is
because when a system is near a stable state, features become
less prominent and the margin of error increases, as observed
in case of event-9 in the Table-II.

The comparison clearly demonstrates the superiority of a
feature selection-based method over traditional classification
methods. Some of the classical techniques are very accurate
and promising. However, as a stand-alone microgrid is a highly
sensitive network, a small classification error in a post-fault

scenario can have significant consequences. Therefore, it is
desirable to implement an algorithm with improved accuracy.

In Figure-13 the overall accuracy in detecting all the nine
events of the proposed distributed method is determined based
on four different fault locations. In total 400 simulations were
carried out to test the algorithm; 100 simulations for each of
the fault locations. In each simulation the wind power and
demand was randomly varied within a predefined boundary to
develop different test data. The black, blue, green and red
lines represent the accuracy of the algorithm in the diesel
power plant, the solar power plant, the wind plant and the
hydro power plant respectively. While the Dotted ..., the
Dashed - - -, the Dot-Dashed -.- and the Solid lines represent
faults near the solar power plant, the diesel power plant, the
hydro power plant and the wind power plant respectively.
After each simulation, Figure-13 was updated and the running
means of the observed accuracies were plotted. Therefore,
the convergence observed in accuracy, represents the overall
accuracy, once all the test cases have been performed. The
data in Figure-13 shows dynamic behavior because after each
simulation the mean accuracy of the algorithm is updated.
That is why, the more simulation is carried out the more
convergence is achieved in mean accuracy.
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Figure 13. Running mean of accuracy of the algorithm in four locations,
observed after a total of 400 (4× 100) simulations. With four generators and
four fault-locations, sixteen combinations have been observed.

The key application of the proposed method is likely to be
in the context of identifying the generator affected most by
a fault and making valuable decisions in order to clear the
impact and restore the grid.

Based on the determination of the underlying event, the
distributed controllers operate the SC located closest to the
faulty generator. This means the decision is to identify which
SC placed near to the subject generators should be in bypass
mode. The other SCs will remain in the blocking or non-
operational mode. Table-III represents all the available features
for a 1-second data window during the fault period. The fault
location was altered from close to generator-1 to generator-4
and four scenarios were created. The algorithms are distributed
thus, do not share data between themselves. The application
shown in column 6 shows whether an SC should be operated
in bypass mode or not in order to damp the oscillation. Yes
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Table III
ONLINE DECISION MAKING BASED ON THE FEATURE DATA COLLECTED

FROM DIFFERENT LOCATIONS (OBSERVED FROM DIFFERENT

GENERATORS)

Observed
From

Fault at Prominence
Factors

Width
Factors

Frequency
Factors

Decision

G1 G4 0.0315 38.878 12.1 No
G1 G3 0.00166 34.72 1.2 No
G1 G2 0.038 37.57 12.4 No
G1 G1 10.64 27.183 49.98 Yes

G2 G4 0.035 21.51 15.2 No
G2 G3 0.00135 22.35 2.7 No
G2 G2 8.66 19.57 37.2 Yes
G2 G1 0.044 21.21 22.3 No

G3 G4 0.038 27.5 8.66 No
G3 G3 7.4 19.88 4.74 Yes
G3 G2 0.002 24.07 5.76 No
G3 G1 0.018 24.3 9.8 No

G4 G4 9.02 26.1 35.46 Yes
G4 G3 0.0002 34.8 9.12 No
G4 G2 0.017 34.75 10.03 No
G4 G1 0.025 35.44 10.82 No

means operate the closest SC and No means do not operate that
SC. Each algorithm can only control the SC located closest to
it. Once the algorithm recognizes the transition from Event3
towards Event4 the algorithm switches back the SCs into
non-operational mode. This switching of the SCs based on
the identification of different events is considered an online
operation. From Table-III it is observable that, adding different
features, can help distinguish event and facilitate decision
making. It is because, when a fault occurred near any power
plant, the features change accordingly in all the four locations.

Figure-14 shows a simulated event where a decision error
results from a classification error. The decision made with a
classification error is then compared with a decision without
any classification error. In this event the algorithm placed
closer to the Generator-1 fails to identify the location of the
fault and does not operate its SC but Generator-4 operates the
SC near it, thus affecting the direction of power flow.
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Figure 14. Decision making with and without the proposed algorithm. The
proposed algorithm can detect an event faster with higher accuracy

Figure-15 shows a post-fault operation based on the deci-
sions made. This shows how the distributed SCs are operated
once the fault location is detected near generator-1. Only the
SC close to generator-1 is operated in bypass mode and the
oscillation is damped to achieve a post-fault stable state. The
switching in SC takes place immediately after the fault is

cleared.
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Figure 15. Post fault operation of generator-1 with the nearby SC in bypass
mode. The algorithms placed in all four locations are working independently.

V. CONCLUSION

This study develops and demonstrates a novel algorithm to
detect power system dynamic events by implementing a less
computationally expensive feature selection method. The per-
formance of the algorithm is clearly superior to the traditional
classification approaches. Minimal classification errors were
found to occur during the transition periods from one event
to another. Once the data window falls into only one category
the classification becomes close to 100% accurate.

The performance of the algorithm was tested on an offline
basis only. Any misclassification due to time lag or missing
data was ignored. Another key consideration with the current
algorithm is selecting an appropriate data window. Faults
are considered to have a fixed length before being cleared.
During each of the short data windows, loads as well as
non-dispatchable generation are considered constant. In future
studies, dynamicity of the loads, intermittent generation and
fault duration will also be addressed.

The detection of events is mostly based on one type of
three-phase fault leading to rotor angle instability. More com-
prehensive analysis needs to be carried out for other types
of instability. Furthermore, the decision-making capability can
be made more extensive by considering optimal restoration
actions for a cost-effective post-fault operation.

Overall, it can be stated that the proposed algorithm has
shown promise, despite being less computationally intensive
than the traditional methods.
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