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Abstract—We present a hybrid metaheuristic optimization
algorithm for solving economic dispatch problems in power
systems. The proposed algorithm, based on bat algorithm,
combines chaotic map and random black hole model together.
Chaotic map is used to prevent premature convergence, and
the random black hole model is helpful not only in avoiding
premature convergence, but also in increasing the global search
ability, enlarging exploitation area and accelerating convergence
speed. The pseudo code and related parameters of the proposed
algorithm are also given in the paper. Different from other related
works, the costs of conventional thermal generators and random
wind power are both included in the cost function because
of the increasing penetration of wind power. The proposed
algorithm has no requirement on the convexity or continuous
differentiability of the cost function, although the effect on fuel
cost, caused by the underestimation and overestimation of wind
power, is included. This makes it feasible to take more practical
nonlinear constraints into account, such as prohibited operating
zones and ramp rate limits. Three test cases are given to illustrate
the effectiveness of the proposed method.

Index Terms—economic dispatch, power systems, bat algo-
rithm, random black hole, chaotic map.

I. INTRODUCTION

ECONOMIC dispatch problem (EDP) is one of the cen-
tral concerns in power systems, whose objective is to

economize operating costs for all committed generators while
meeting the supply-demand balance and constraints such as
active power generation limits, ramp rate limits and prohibited
operation zones [1], [2]. As a constrained optimization prob-
lem, EDP can be solved by λ-iteration method [3], gradient
method [4] and projection method [5]. But these conventional
mathematical methods require cost functions to be continu-
ously differentiable and convex, and hence can not be applied
to EDP since the presence of ramp rate limits, prohibited
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operation zones and valve-point effects makes the involved
cost functions inevitably discontinuous and/or nonconvex.

In the past two decades, intelligent metaheuristic algorithms
have been applied to EDP, without requiring the cost function
to be continuous or convex (see e.g., [6]–[14] and references
therein). Specifically, in [6] and [7], GA and improved GA
were employed to solve EDP with valve-point effects. In [8]–
[11], PSO and hybrid PSO algorithms were employed for
solving EDP with nonlinear features, which are caused by
prohibited operation zones, ramp rate limits and valve-point
effects. In [12], artificial bee colony optimization algorithm
was presented for multi-area economic dispatch. In [13], a
modified harmony search algorithm was proposed for EDP
considering the effect of environment. In [14], a hybrid har-
mony search algorithm was developed for solving EDP, as
well as the multi-area EDP. However, all the aforementioned
works are only concerned with thermal generators and do not
involve renewable energies.

Recently, a variety of renewable energy have been integrated
in power systems to cope with the challenge of environment
and the shortage of energy. Among them, wind power (which
means the active power generated by wind turbines in this
paper) are a typical, widely used manner. It was reported
that the installed capacity of wind turbines reached 456 GW
around the world in 2016 [15]. Therefore, it is urgent to
integrate random wind power into EDP. In this direction,
there has been much progress. In [16], virtual power plant
technology was used for EDP incorporating wind turbines,
but the wind farms were assumed to be zero cost, which
means no penalty for the underestimation and overestimation
of available wind power. In [17], thermal generators were
included in the cost function, but wind turbines were treated
as a constraint. GA was employed to solve EDP with wind
turbines in [18], but the cost function only includes thermal
generators and the cost caused by random wind power is
ignored. A distributed economic dispatch method with random
wind power was realized in [19], but requires the existence of
gradient of the cost function, which is not always satisfied due
to the nonlinear characteristics caused by valve-point effect,
prohibited operation zones, etc.

Bat algorithm, which is proposed in 2010 and inspired by
the echo locative behavior of bats, is much superior to GA
and PSO in terms of accuracy and efficiency [20]. The effec-
tiveness of bat algorithm for solving engineering optimization
problems was demonstrated in [21]–[24]. Specially, chaotic



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2812711, IEEE
Transactions on Power Systems

JOURNAL OF IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. ?, NO. ?, MAY 2017 2

map was combined with bat algorithm in [22] which concluded
that sinusoidal map was the most suitable chaotic map to
replace loudness or pulse emission rate in bat algorithm.
In [23], three approaches were pointed out to enhance the
performance of bat algorithm, and the authors got the idea
that bat algorithm hybridization with other algorithm was the
most effective way to enhance its performance. Up to now,
there have been only a few works on EDP via bat algorithm.
For example, the chaotic bat algorithm [22] was applied to
EDP in [27], but only thermal generators were considered in
the model.

In this paper, we are concerned with the EDP incorporating
thermal generators and wind turbines, and a novel hybrid bat
algorithm (named RCBA) is proposed to deal with this prob-
lem by integrating Random black hole model and Chaotic
maps into bat algorithm. The cases without wind turbines are
also discussed for comparison with other algorithms to illus-
trate the effectiveness of the proposed algorithm. Specifically,
the main contributions of this paper are two-fold:

(i)(i)(i) A new hybrid bat algorithm (RCBA) is provided which
has good characteristics in performance enhancing compared
with bat algorithm. On one hand, the loudness and/or pulse
emission rate are replaced by chaotic maps due to its good
random characteristic. This is helpful in improving the diver-
sity of solutions, and hence can reduce premature convergence
problem. On the other hand, the random black hole model is
integrated in RCBA to replace the local random walk in bat
algorithm. This can greatly help increase the global search
ability and enlarge exploitation area at current group best, and
is key to acquire better solution and faster convergence speed
for RCBA.

(ii)(ii)(ii) An effective method for solving EDPs including thermal
generators and wind turbines is realized by the usage of
RCBA. The cost function in this paper contains not only the
cost of conventional thermal generators but also the effect on
fuel cost caused by the underestimation and overestimation
of random wind power, unlike in [3]–[13] without involving
random wind power. Due to the usage of RCBA, the convexity
or continuous differentiability, as in [17] and [19], is not
required for the cost function and constraints. So the proposed
method can better match the reality in power systems. Par-
ticularly, the nonlinear constraints, such as ramp rate limits
and prohibited operating zones, can be included in the model
while considering the underestimation and overestimation of
wind power.

The remainder of this paper is organized as follows. Section
II elaborates the model of EDP including thermal generators
and wind turbines. In Section III, RCBA is proposed and
the process of implementing RCBA to EDP is presented. In
Section IV, the superiority of RCBA is addressed with five
typical benchmark functions, and three test cases are given
to illustrate the effectiveness of RCBA. Remarks and future
research directions are included in Section V.

II. PROBLEM FORMULATION

The objective of EDP in this paper is to minimize the total
costs including thermal generators and wind turbines subject
to the constraints such as generator constraints and supply-
demand balance.

A. Objective function

The cost function of EDP incorporating wind turbines is
given by

Ng∑
i=1

fi(Pi) +

Nw∑
j=1

gj(Wj), (1)

where Pi and Wj are active power produced by the i-th thermal
generator and the j-th wind turbine, respectively; Ng and Nw

are the numbers of thermal generators and wind turbines,
respectively. The cost function of the i-th thermal generator
is described as:

fi(Pi) = αiP
2
i + biPi + ci, (2)

where ai, bi, ci are cost coefficients of the i-th thermal
generator. The cost function of the j-th wind turbine is given
by [29], [30]:

gj(Wj) = qjWj + Crw,jE(Yoe,j) + Cpw,jE(Yue,j), (3)

where qj is the cost coefficient; Crw,j represents the cost coef-
ficient for there exists remainder energies of the j-th available
wind power (which is underestimation), and Cpw,j represents
the cost coefficient for purchasing electric power from other
manners so as to make up the shortage of wind power (which is
overestimation); Crw,j(E(Yoe,j)) and Cpw,j(E(Yue,j)) denote
the costs of overestimation and underestimation for the j-th
wind turbine, respectively. Interested readers are referred to
[30] for the definitions of E(Yoe,j) and E(Yue,j) due to the
space limitation. In (1), the costs including thermal generators
and wind turbines are integrated into the same cost function,
and both underestimation and overestimation of the available
wind power are considered due to the random nature of wind.
We adopt this random wind power model in the cost function
because it is especially suitable for analysis in EDP.

B. Constraint conditions

Constraints of the active power output limit for the i-th
thermal generator, the j-th wind turbine and supply-demand
balance are given by

Pmin
i ≤ Pi ≤ Pmax

i , (4)

Wmin
j ≤Wj ≤Wmax

j , (5)∑Ng

i=1 Pi +
∑Nw

j=1Wj = Pd + Ploss, (6)

where Pmin
i and Pmax

i denote the minimum and maximum
active power output of the i-th thermal generator, respectively;
Wmin

j and Wmax
j denote the minimum and maximum active

power output of the j-th available wind power, respectively;
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Pd is the total load demand, and Ploss is the transmission
line losses represented by B-coefficients, which is described
as below:

Ploss =

Ng∑
i=1

Ng∑
j=1

PiBijPj +

Ng∑
i=1

B0iPi +B00. (7)

Additionally, two practical operation constraints of thermal
generators should be included in EDP.
(i)(i)(i) Ramp rate limits The ramp characteristics in starting

up and shutting down generators are modeled as follows:{
Pi − P 0

i ≤ URi,

P 0
i − Pi ≤ DRi,

(8)

where P 0
i , URi and DRi denote the previous active power

output, the limit of up-ramp rate, and the limit of down-ramp
rate of the i-th thermal generator, respectively.
(ii)(ii)(ii) Prohibited operating zones A typical thermal unit

may have a steam valve in operation or a vibration in a
shaft bearing, which may cause discontinuity input-output
performance curve. This phenomenon is called prohibited
operating zones, which is described as below:

Pmin
i ≤ Pi ≤ P l

i,1,

Pu
i,k−1 ≤ Pi ≤ P l

i,k,

Pu
i,ni
≤ Pi ≤ Pmax

i ,

k = 2, . . . , ni,

(9)

where ni is the number of prohibited operation zones for the
i-th unit, P l

i,k and Pu
i,k are lower and upper bound of the k-th

prohibited operation zone for the i-th unit, respectively.

III. DEVELOPMENT OF THE PROPOSED ALGORITHM

This section is devoted to proposing the hybrid bat algorithm
(RCBA) by integrating chaotic maps and random hole model,
and moreover, presenting the pseudo code of the proposed
algorithm.

A. Overview of bat algorithm

Bats use echolocation to detect preys or shelter obstacles.
The typical range of frequencies of acoustic pulses emitted by
bats is between 25kHz and 150kHz, and the pulses can last
for a few milliseconds. The pulse emission rate, which can
be accelerated to about 200 pulses per second, will increase
dramatically when bats are close to the prey. More specifically,
the pulse emission rate is inversely proportional to the distance
of the prey, and meanwhile, the loudness of emitted pulses will
be decreased when bats fly to the prey.

Bat algorithm mimics the behavior of bat hunting for prey.
For each virtual bat, the pulse frequency fi, velocity vti and
position xti at time step t are defined by

fi = fmin + (fmax − fmin)β, (10)

vt+1
i = vti + (xti − xt∗)fi, (11)

xt+1
i = xti + vt+1

i , (12)

where fmin and fmax are the minimum and maximum fre-
quency of emitted pulses, respectively; β ∈ [0, 1] is a uni-
formly distributed random number; xt∗ is the current best
position (or solution) at time step t in the current population.

A new search is then executed by local random walk:

xt+1
i,new = xt∗ + ξAt, (13)

where ξ ∈ [−1, 1] is a random number, and At is the average
loudness at time step t.

When bats succeed in finding their preys, the loudness Ai

is decreased and the pulse emission rate ri is increased. The
two characteristics are described as follows:

At+1
i = αAt

i, (14)

rt+1
i = r0i (1− exp(−θt)), (15)

where 0 < α < 1 and θ > 0 are constants, and At
i → 0, rti → r0i

as t → ∞. The pseudo code of bat algorithm is available in
[20].

B. Chaotic maps

Recently, chaotic maps have been successfully applied in
many optimization cases (by replacing the random parameters
or variables in algorithms) [9], [22], [27], [38], [39]. Thanks
to the nonrepetition characteristic of chaos, algorithms based
on chaotic maps achieve more overall search abilities than the
original algorithms [38]. Moreover, the characteristic is key
for algorithms to escape from local optima and hence to avoid
premature convergence [39].

In bat algorithm (see [20]), the local random walk is
executed only when the random value is larger than the pulse
emission rate ri, but ri increases as iteration goes on (see (15)),
and hence the probability for executing the local random walk
decreases. Similarly, noting from (14) that Ai decreases as
iteration goes on, the probability for accepting the new solution
also decreases. An effective approach for bat algorithm to
avoid premature convergence is to substitute chaotic maps for
ri and Ai.

C. Random black hole model

Any mass, whose radius is smaller than its Schwarzschild
radius, can become a black hole which has strong gravitational
effects [25], [26]. The gravity is so strong that nothing can
escape from inside it. In Schwarzschild radius, the escape
speed is equal to the speed of light. Because no object goes
faster than light, anything which passes through or crosses the
boundary of a black hole will be absorbed including light.

Inspired by the concept of black hole, the RBH-PSO [28] is
proposed. Every particle in RBH-PSO is regarded as a star in
space, and its fitness value is gravity. Each particle is affected
by the gravity of global optimum and local optimum at each
iteration. The real solution is still unknown during this process.
The solution, which at this stage is the present group best, is
regarded as the base point of a black hole.
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Fig. 1. Position update of xti(b) with random black hole.

We also adopt this random black hole model. The principle
is described in Fig. 1 where xti(b) and xt+1

i (b) denote the b-
th dimension’s position of the i-th particle at time step t and
t+1, respectively; xt∗(b) denotes the b-th dimension’s position
of current global optimum xt∗ (i.e., the base point) at time step
t; rd denotes the effective radius of a black hole; the threshold
p and random value l represent the attraction of a black hole to
stars and the coefficient corresponding to xti(b), respectively,
which both obey uniform distribution in [0, 1].

A random black hole is generated close to the current group
best xt∗, and its distance to xt∗ ∈ [−rd,+rd]. Meanwhile, the
threshold p associated to the black hole is also generated. Then
for each single dimension xti(b) in every solution xti, a random
value l is generated, and xti(b) is captured by the black hole if
l ≤ p, otherwise xti will be updated by (12). The update rules
are stated as follows:

xt+1
i (b) = xt∗(b) + rd ∗ µ, l ≤ p, (16)

xt+1
i = xti + vt+1

i , l > p, (17)

where µ obeys uniform distribution in [−1, 1]. The value for
each dimension in xti is updated individually by (16). But in
bat algorithm, the values of all dimensions in xti are updated
simultaneously (see (13)).

The following aspects of benefits can be brought by inte-
grating the random black hole model into bat algorithm:
(i)(i)(i) Increase the global search ability. Different from the

actual black hole, the velocity vi of all particles is kept
and calculated at every iteration. Through this scheme, each
dimension in a particle has the probability to be absorbed by
the black hole and also has the chance to escape from the
black hole in the next iteration. Therefore, the global search
ability is enhanced greatly.
(ii)(ii)(ii) Enlarge exploitation area and accelerate convergence

speed. Because the random black hole is generated around
the current group best xt∗, it is key to achieve a more accurate
solution. On one hand, if xt∗ is near to the real global optimum,
the model will give a complete search around xt∗, which is
helpful in accelerating convergence speed. On the other hand,
if xt∗ gets into a local optimum, the model will help the particle
to escape from the local minimum, which is helpful in avoiding
premature convergence.
(iii)(iii)(iii) Enhance the random search efficiency. The effective

radius rd is treated as a piecewise parameter. At the beginning
of iterations, for enlarging the search vision of individuals, rd
should be assigned with a relatively big value because the
random initialized solutions are generally far away from the

real global optimum. But as iteration goes on, a relatively
good current group best is obtained, and an overlarge search
vision would be harmful for individuals to find better solutions.
So the value of rd should be decreased to an appropriate
interval. Particularly, rd is independent of any other parameters
and flexible to be used. This characteristic is meaningful in
enhancing the random search efficiency.

Algorithm 1 Proposed algorithm: RCBA
1: Initialize bats population xi, vi, A0

i ,fmin,fmax and r0i
2: Get fitness values according to the initial parameters
3: while t < Max number of iterations do
4: Generate p, µ and new solutions by (10), (11) and (12)
5: if rand > rti then % Use black hole model here
6: for each dimension in xti do
7: Randomly generate l
8: Update xt+1

i (b) according to (16)
9: end for

10: end if
11: Generate new fitness value fnew with xt+1

i

12: if rand < At
i && fnew < fitness(i) then

13: Accept the new solution
14: end if
15: Rank the bats and find the current best x∗
16: Update At+1

i and/or rt+1
i by chaotic maps

17: end while
18: Post process results and visualization

D. Proposed algorithm

By integrating chaotic maps and random black hole model,
we propose a new hybrid bat algorithm, named RCBA which
is shown in Algorithm 1. Compared with bat algorithm, the
proposed algorithm has the following superiorities:
(i)(i)(i) The premature convergence problem is reduced. As well

known, evolutionary algorithms always encounter premature
convergence problem. For example, PSO does when particles
trap in some local optima [38]. As stated before, in our
algorithm, chaotic map is meaningful for particles to escape
from local optima, and the random black hole model can
enlarge exploitation area. These help in avoiding premature
convergence problem.

In this paper, Ai and/or ri are updated by chaotic maps. For
case 1 in Section IV, ri is updated by sinusoidal map which
is given as:

rt+1
i = ζ(rti)

2 sin(πrti), (18)

where ζ is set to 2.3. For cases 2 and 3 in Section IV, Ai and
ri are updated by

At+1
i =

{
At

i/0.7 if At
i < 0.7,

10(1−At
i)/3, if At

i ≥ 0.7,
(19)

and

rt+1
i = rti + 0.2− ((0.5/(2π)) sin(2π ∗ rti)) mod 1, (20)
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respectively.
(ii)(ii)(ii) The exploitation area is enlarged and the convergence

speed is accelerated. Bat algorithm uses local random walk to
update positions. However, in RCBA, the local random walk is
replaced by the random black hole model, which is helpful in
increasing the global search ability, enlarging the exploitation
area and accelerating convergence speed.

In RCBA, each dimension xti(b) in xti is updated individu-
ally, and every iteration step has different updating parameters.
This characteristic is illustrated by (16), where the base point
xt∗ is updated at each end of iteration, and µ is a different
random value in each iteration (see step 4 in Algorithm 1). The
updating parameters are different because µ is changed and
xt∗(b) may be modified at every iteration. So the exploitation
area is increased greatly. But in bat algorithm, the update of xti
happens simultaneously for all dimensions, rather than only for
one dimension; and meanwhile, the values for all dimensions
in xti are updated with the same parameter ξ at all iterations
(see (13)). Therefore, the convergence speed in RCBA is more
quickly than that in bat algorithm.

Actually, not all the dimensions in xti will be updated in
RCBA. The threshold p and random number l are changed at
every iteration (see step 4 and 7 in Algorithm 1), and the value
of every dimension xti(b) in xti is updated only when l ≤ p.

For the random black hole model, it is crucial to get the
appropriate values of the radius rd and the threshold p. If rd
is too large, the next solution will be far away from the global
optimal solution. If rd is too small, the function for enlarging
visions will be lost. As for threshold p, it determines who has
the chance to be absorbed by the black hole. An overlarge
p will result in excessive dimensions in xti to be updated,
which is likely to have negative effect on convergence. When
the threshold p is too small, the number of dimensions, whose
values are updated in xti, is very small, which would make the
black hole model play a very limited effect on enhancing the
ability for enlarging search areas and, hence, lead to a slower
convergence speed than an appropriate value of threshold p.

E. Implement RCBA to EDP

The penalty function method is used to deal with the
equality constraint (6), so the cost function (1) need to have a
slight modification by using a penalty coefficient λ. Thus, we
combine (1) with (6) and get the following objective function:

Ng∑
i=1

fi(Pi) +

Nw∑
j=1

gj(Wj)

+ λ

∣∣∣∣∣∣
Ng∑
i=1

Pi +

Nw∑
j=1

Wj − Pd − Ploss

∣∣∣∣∣∣ . (21)

By combining (4) and (8) we conclude

max(Pmin
i , P 0

i −DRi) ≤ Pi ≤ min(Pmax
i , P 0

i + URi). (22)

Then inequality constraints refer to (5), (9) and (22). The costs
of fi(Pi) and gj(Wj) are defined by (2) and (3), respectively.

The steps for implementing EDP with RCBA are listed as
follows:

Step 1: Obtain the parameters of thermal generators and
wind turbines, and then generate the initial parame-
ters for RCBA and the random black hole model.

Step 2: Generate the random initial solutions and get their
fitness values using (21), and then find the best
solution and the best fitness value.

Step 3: Update frequency fi, velocity vti and position xti
according to (10), (11), and (12), respectively.

Step 4: Generate the solution xt+1
i by (16) or (17), and then

check the inequality constraints (5), (9) and (22).
Step 5: Evaluate the new solution, update the loudness

At+1
i and pulse emission rate rt+1

i , and find the
current best solution and the best fitness value.

Step 6: Repeat steps 3 to 5 until the stopping criterion is
satisfied.

IV. EXAMPLES AND RESULTS

The superiority of RCBA is illustrated by five typical
benchmark functions. Then, the effectiveness of the proposed
method for power systems is demonstrated through three test
systems: first, a 6-bus power system is used for solving EDP
including thermal generators and wind turbines; second, a 26-
bus system with 6 thermal generators and 46 transmission
lines are contained in the simulation; third, a system with 38
generators is employed to illustrate the effectiveness of high
dimensional system for power systems using RCBA. The unit
of active power, fuel cost and CPU time are MW, $/h, and
second, respectively.

A. Simulation results with benchmark functions

This subsection illustrates the superiority of RCBA over
other optimization algorithms with five typical benchmark
functions, that is, Sphere, Ackley, Griewangk, Rastrigin and
Rosenbrock. Readers can get the definitions of these functions
in [31]. To better compare the performance of algorithms, four
different dimensions (i.e., 2, 10, 30, 50) are considered for
each benchmark function. The comparison results are shown
in Tables I–IV.

TABLE I
RESULTS OF BENCHMARK FUNCTIONS WITH DIMENSION 2

Functions RCBA GA [33] ICS [33]
Sphere 2.0327E-47 4.5E-9 1.2E-13
Ackley 8.8818E-16 6.3E-6 5.02E-7

Griewangk 0 – –
Rastrigin 0 1.5E-8 6.5E-9

Rosenbrock 4.4251E-23 8.87E-5 5.10E-7
ICS: improved cuckoo search

Let’s see what performance RCBA can have. In Table I,
the dimension is set to 2, and RCBA obtains the smallest
values among the three algorithms for all the listed benchmark
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TABLE II
RESULTS OF BENCHMARK FUNCTIONS WITH DIMENSION 10

Functions RCBA CLPSO [31] ABC [31]
Sphere 3.8240E-44 5.15E-29 4.86E-17
Ackley 8.8818E-16 4.32E-10 2.3E-16

Griewangk 0 4.56E-3 1.04E-3
Rastrigin 0 2.46 4.44E-17

Rosenbrock 7.8494E-24 8.87E-5 1.07E-1
CLPSO: comprehensive learning PSO; ABC: artificial bee colony

functions. In Table II, when the dimension is increased to 10,
RCBA gets the optimum values for all the functions except
Ackley. Table III shows the comparison results when the
dimension is changed to 30, and the same phenomenon occurs
as in Table I that RCBA gets the smallest values for all the
functions. When the dimension is set to 50, as it shown in
Table IV, RCBA outperforms other algorithms on the listed
functions except Rastrigin. In short, RCBA nearly gets all
the optimum values for the five benchmark functions under
the four dimensions, which means that RCBA achieves better
performance than the listed algorithms.

TABLE III
RESULTS OF BENCHMARK FUNCTIONS WITH DIMENSION 30

Functions RCBA GWO [34] PSO [34]
Sphere 3.0493E-43 6.5900E-28 1.3600E-4
Ackley 4.4409E-15 1.0600E-13 2.7601E-1

Griewangk 0 4.4850E-3 9.2150E-3
Rastrigin 2.5725E-3 3.1052E-1 4.6704E1

Rosenbrock 7.9403E-12 2.6812E1 9.6718E1
GWO: grey wolf optimizer

TABLE IV
RESULTS OF BENCHMARK FUNCTIONS WITH DIMENSION 50

Functions RCBA ABC
[31]

PSO
[32]

FEA-PSO
[32]

FEA-GA
[32]

Sphere 2.1E-42 6.4E-16 3.60E-3 5.7E-17 9.39E-3
Ackley 8E-15 8.22 4.3E-14 1.3E-14 2.08E-2

Griewangk 0 4.4E-12 1.01E-2 9.10E-2 9.88E-2
Rastrigin 4.35E-4 3.8E-13 – – –
Rosenbrock 7.32E-8 3.08E1 6.09E1 2.99E0 7.38E1
FEA-PSO/GA: factored evolutionary algorithm-PSO/GA

The effective radius of random black hole is the key for
RCBA to achieve such good performance and the Sphere
function with dimension 30 is chosen to further elaborate this
phenomenon. Fig. 2 shows the simulation results for Sphere
function with five examples (each example has different value
of rd). To fairly compare the performance, the same random
initialized values are used in the five examples. We first
compare examples 3 and 4 (i.e., the dashed green line and
the solid black line) which is shown in Fig. 2 (a). Both the
two examples obtain relatively poor fitness values compared
with other examples. The reason is that, the random initialized

solutions are far away from the global optimum and the values
of rd for the two examples (i.e., 1e-6 and 1e-9, respectively)
are too small. So the exploitation area is limited in a very small
space. This is harmful for individuals to enlarge visions and
accelerate convergence speed at the beginning. If this status
is still continued, of course, a bad result would be obtained
finally.

Fig. 2 (b) shows the remained three examples with a
zoomed-in view as it is hardly to see them clearly in Fig. 2
(a). In Fig. 2 (b), the rd’s values of examples 1 and 2 are both
relatively bigger than the corresponding values of examples 3
and 4 shown in Fig. 2 (a), and hence examples 1 and 2 get
better convergence characteristics than examples 3 and 4. For
themselves of examples 1 and 2, the convergence performance
obtained by example 2 is superior to the performance obtained
by example 1. This means that the effective radius of random
black hole (i.e., rd) can not be increased too much, which will
affect the convergence performance adversely. But the value
(rd = 1) is also very important because the dashed red line
(i.e., example 1) indicates that 1 is nearly the upper limit of
rd for Sphere function.

(a) Iterations ×104
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
itn

es
s 

va
lu

e

0

10

20

30

40

50

60

70

80

90

100

(1) rd = 1

(2) rd = 1e − 1

(3) rd = 1e − 6

(4) rd = 1e − 9

(5) multi-step

(b)
0 500 1000 1500

0

0.05

0.1

(c)
0 50 100

0

0.05

0.1

Fig. 2. (a) Simulation results for Sphere function with five examples. (b) A
zoomed-in view for (a). (c) A zoomed-in view for (b).

TABLE V
THE PIECEWISE VALUES OF rd AT DIFFERENT STEPS

Steps [0, 50) [50, 100) [100, 200) [200, 300) [300, 400)
rd 1e-1 1e-3 1e-4 1e-6 1e-9

Steps [400, 500) [500, 600) [600, 700) [700, 2e4)
rd 1e-12 1e-14 1e-17 1e-20

All the above analysis stimulates us to propose a new idea,
that is, can we treat rd as a piecewise manner to enhance
the performance of RCBA whenever at the beginning or at
any other time of the iterations? Example 5 gives the answer.
Fig. 2 (c), which is a zoomed-in view for Fig. 2 (b), shows the
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convergence curves of examples 2 and 5. The value of rd for
example 2 is 1e-1, but for example 5, rd is characterized in a
piecewise manner which is shown in Table V. Both the two
examples have the same value of rd at the steps of 1 to 50, and
use the same random initialized values, so two relatively close
solutions are obtained around the 50th step. But after this,
example 5 achieves better convergence speed and optimum
value than example 2 due to the decreased value of rd as
the iteration goes on. Therefore, the piecewise manner for rd
provides an effective approach for RCBA to achieve better
performance.

To sum up, a better performance is achieved by RCBA
compared with the listed algorithms, and the effective radius
rd plays a central role in RCBA.

B. Simulation results for EDP of power systems using RCBA

Three test cases are chosen to demonstrate the effectiveness
of the proposed method. For the three test systems, in case 1
and 2, p = 0.45, and rd is set to 42 and 2 when the steps
in [1, 25] and [26, 500], respectively; and for case 3, rd and p
are set to 2 and 0.25, respectively. The parameters should be
modified appropriately according to different occasions. More-
over, for convenience, thermal generator and wind turbine are
simply denoted by TG and WT in the later figures and tables.

1) Case 1: Implementation on a 6-bus system including
random wind power

In this case, all test data are taken from [19]. Three thermal
generators and one wind farm are included, and the total load
demand Pd is 600 MW. The population n, fmin and fmax are
set as 40, 0, and 1, respectively. The loudness Ai and pulse
emission rate ri are replaced by chaotic maps as stated before.

Firstly, no constraint is included in the model. Let the
initial values of Pi and Wj are both between 0 and 600 MW
randomly. Two random simulation results for active power
output are displayed in Fig. 3.

In Fig. 3 (a), the optimal solution is P1=365.0168 MW,
P2=105.0158 MW, P3=29.3694 MW and W1=100.5956 MW
with the total cost 5611.8 $/h. In Fig. 3 (b), the optimal solution
is P1=370.2914 MW, P2=99.8921 MW, P3=28.2900 MW and
W1=101.5138 MW with the total cost 5611.7 $/h. Since no
constraint is included, solutions in the iteration process may be
negative (see Fig. 3 (a)). The number of steps for convergence
in Fig. 3 is 155 and 96, respectively. However, from Fig. 5(a)
in [19], the number is about 300000, which is much larger
than that in RCBA, but the two methods have almost the same
costs (it is 5611.8 $/h in [19]). The cost convergence curve
for Fig. 3 (a) is shown in Fig. 4 (a).

Secondly, the constraints (4) and (5) are included, and two
random simulation results are shown in Fig. 5. The first op-
timal solution is P1=353.30 MW, P2=100.00 MW, P3=50.00
MW and W1=96.69 MW with the total cost 5614.35 $/h in
Fig. 5 (a), and in Fig. 5 (b), the optimal solution is P1=352.43
MW, P2=100.00 MW, P3=50.00 MW and W1=97.57 MW
with the total cost 5614.40 $/h. Fig. 5 indicates that the
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Fig. 3. Two random simulation results for active power output without
constraints for case 1.
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Fig. 5. Two random simulation results for active power output with constraints
for case 1.

TABLE VI
COMPARISON OF TOTAL COSTS WITH CONSTRAINTS FOR CASE 1

Items P1 P2 P3 W1 cost
RCBA(a) 353.30 100.00 50.00 96.69 5614.35
RCBA(b) 352.43 100.00 50.00 97.57 5614.40

Algorithm [19] 351.78 100.02 50.02 98.17 5614.45
GA [19] 349.06 103.57 50.03 97.38 5614.7

minimum value of TG3 is limited to 50 MW due to the
constraints. But in Fig. 3 (a) and Fig. 3 (b), the value of TG3
are both less than 50 MW. Therefore, the final costs in Fig. 5
are a little larger than those in Fig. 3 because of the existence
of constraints. The total cost convergence curve for Fig. 5 (a)
is shown in Fig. 4 (b).

The comparison results of total costs with constraints are
listed in Table VI, in which the data for the 3rd and 4th rows
come from P1579 and P1581 in [19], respectively. Table VI
indicates that the two random solutions obtained by RCBA
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are both superior to those obtained by the other two methods.
Therefore, the effectiveness of the proposed RCBA for EDPs
with random wind power is demonstrated.

2) Case 2: Implementation for EDP with all constraints
aforementioned

Six thermal generators, 26 buses and 46 transmission lines
are included in this case, and the total load demand is 1263
MW. In order to compare the performance of RCBA with other
algorithms, no wind turbines are included in cases 2 and 3.
All the constraints aforementioned in this paper are included
in this case, and the test parameters are taken from [8].
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Fig. 6. (a) The active power output simulation results of the 26th trial for
case 2 with RCBA. (b) The fuel cost convergence curve of the 26th trial for
case 2 with RCBA. (c) The errors for estimated fuel costs with 50 trials for
case 2. (d) Estimated fuel costs with 50 trials for case 2.

In this case, the population n is selected as 200, and
the number of iterations Niter is set to 50. Total 50 trials
are executed and the simulation results are shown in Fig. 6.
The convergence curves of the 26th trial for active power
output and fuel cost are given in Fig. 6 (a) and Fig. 6 (b),
respectively. The errors and estimated fuel costs of the 50
trials are given in Fig. 6 (c) and Fig. 6 (d), respectively. The
errors are defined as e(m) =

∣∣∣∑Ng

k=1 Pk − Pd − Ploss(m)
∣∣∣,

and m ∈ [1, 50]. There are two rules for selecting the optimal
solutions in the 50 trials, one is

∑Ng

k=1 Pk < C1, the other is
e(m) < C2, where C1 and C2 are both constants. According
to the rules, the 26th trial is selected as the optimal solution,
and the results are shown in Table VII. Table VIII shows the
comparison results of several algorithms with RCBA. In Table
VII,

∑
Pi, Ploss and Fuel cost denote the sum of P1 to P6,

transmission line losses, and fuel costs of thermal generators,
respectively. In Table VIII, Ave cost, Max cost, Min cost,
CPU time and Steps are the average, maximum, minimum
fuel costs during the iteration, computing time for CPU, and

the number of convergence step for the optimal solution of
case 2, respectively.

TABLE VII
THE OPTIMAL SOLUTIONS OF 26-BUS SYSTEM FOR CASE 2

Items RCBA PSO [8] GA [8] CBA [27]
P1 444.7021 447.4970 474.8066 447.4187
P2 175.9130 173.3221 178.6363 172.8255
P3 256.3328 263.4745 262.2089 264.0759
P4 142.2861 139.0594 134.2826 139.2469
P5 169.9175 165.4761 151.9039 165.6526
P6 86.6873 91.27812 74.1812 86.7625∑
Pi 1275.84 1276.01 1276.03 1275.982

Ploss 12.9266 12.9584 13.0217 12.9848
Fuel cost 15449.61 15450 15459 15450.23
CBA: chaotic bat algorithm

TABLE VIII
THE COMPARISON RESULTS FOR CASE 2 (50 TRIALS)

Algorithm Max Cost Min Cost Ave Cost CPU time Steps
RCBA 15462.23 15443.66 15452.16 23.91 26

PSO [8] 15492 15450 15454 14.89 –
GA [8] 15524 15459 15469 41.58 –

CBA [27] 15518.65 15450.23 15454.76 35.2 >250

In Table VII, the total active power
∑
Pi, transmission line

losses Ploss and fuel cost Fuel cost obtained by RCBA are all
the smallest among those obtained by the listed algorithms.
In Table VIII, the data of RCBA comes from the 26th trial
in Fig. 6 (d). The comparison results indicate that RCBA has
the smallest values in all comparison items except CPU time.
The number of steps for convergence in Fig. 6 (b) is 26, but
the corresponding value in [27] is greater than 250. Therefore,
RCBA has better performance than PSO, GA and chaotic bat
algorithm by the comparison.
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Fig. 7. The fuel cost convergence curve for case 3 with RCBA.

3) Case 3: Implementation on a system with 38 generators
The system contains 38 thermal generators. No constraint

is included in this case since the purpose here is to evaluate
whether RCBA is suitable to high dimensional system or not
for power systems. The test data are taken from [36] and the
total load demand is 6000 MW.

In this case, the population n, iterations Niter and dimension
d are set as 5000, 300, and 38, respectively. We run the
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simulation for 4 trials every time and the function parfor
in MATLAB is used to accelerate the simulation speed. The
computing time for 4 trials is 45.79 seconds.

Fig. 7 shows the simulation result of fuel cost, in which the
convergence value is 94183.99 $/h. The active power output
simulation results are not given as there exists 38 curves, and
hence it is hardly to see them clearly. Table IX gives the
optimal active power output for this case, and Table X gives
the comparison results with other algorithms.

TABLE IX
BEST ACTIVE POWER OUTPUT FOR CASE 3

TGs Output TGs Output TGs Output
P1 448.0200 P14 90.0004 P27 38.2371
P2 430.1260 P15 82.0004 P28 20.0004
P3 448.1876 P16 120.000 P29 20.0004
P4 428.7942 P17 161.848 P30 20.0004
P5 432.8496 P18 65.0004 P31 20.0004
P6 418.5107 P19 65.0004 P32 20.0004
P7 389.5183 P20 271.593 P33 25.0004
P8 423.8822 P21 271.138 P34 18.0004
P9 114.0004 P22 259.782 P35 8.00042
P10 114.0004 P23 124.400 P36 25.0004
P11 124.1179 P24 10.0004 P37 21.1384
P12 137.0802 P25 119.777 P38 20.0004
P13 110.0004 P26 84.9791

∑
Pi 6000.00

DE/BBO: differential evolution with biogeography-based optimization [35];
BBO: biogeography-based optimization [35];
PSO TVAC: PSO with time-varying acceleration coefficients [37];
NPSO: a new PSO [40]; PSO Crazy: PSO with craziness operator [41];
SPSO: simple PSO, i.e., the standard PSO

TABLE X
COMPARISON RESULTS OF FUEL COSTS FOR CASE 3

RCBA DE/BBO [35] BBO [35] PSO TVAC [37]
94183.99 94172.35 94176.33 95004.48

NPSO [37] PSO Crazy [37] SPSO [37]
95164.48 95200.24 95439.84

The solutions for the other algorithms are not listed due
to the space limitation, and interested readers are referred to
[35] and [37] for details. It is clear from Table X that the
fuel cost values obtained by RCBA, DE/BBO and BBO are
comparatively less compared with all PSO-based algorithms
and the fuel cost value with RCBA is only a few larger than
that with DE/BBO or BBO. The solution with RCBA cannot
be improved further more due to the limitation of memory on
PC.

Compared with DE/BBO (see Fig. 2 in [35]), our algorithm
has obviously good convergence characteristic. In Fig. 7, the
fuel cost reaches 94330.8 $/h at the 20th step. But at the same
step in [35], the fuel cost is about 96000 $/h, which is much
larger than 94330.8 $/h. Therefore, the effectiveness of RCBA
for high dimensional systems is demonstrated.

V. CONCLUDING REMARKS

In this paper, a novel hybrid algorithm RCBA has been
proposed by integrating chaotic maps and random black hole
model into bat algorithm. We have illustrated the effective-
ness of the proposed algorithm with five typical benchmark
functions, and analyzed why RCBA is successful in avoiding
premature convergence problem and accelerating convergence
speed. We have also successfully applied RCBA to solve EDP
incorporating thermal generators and wind turbines consider-
ing random wind power, and demonstrated the effectiveness
of using RCBA to deal with high dimensional case for power
systems. It should be pointed out that all simulations in this
paper do not include valve-point effects, and this problem is
left as a future work. The proposed algorithm is also suitable
to deal with multiobjective optimization problems, which is
another interesting future direction.
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