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Abstract—Probabilistic Load Flow (PLF) analysis is an im-
portant part of grid design, optimization and operation due
to the uncertainties in the power network for both generation
and demand, increasingly so for newly integrated technologies
including wind power and plug-in vehicles. A reliable, fast
and robust mathematical method for such analyses is a key
requirement to help support widespread integration of these new
generation and load sources. Conventional deterministic Monte
Carlo (MC) analyses, though simple in implementation, becomes
too slow as networks become more complex. In this paper, a
new cumulant-tensor based method is used to assess power flows.
Probability Distribution Functions (PDFs) and reliability indices
are generated as final outputs. Furthermore, general correlation
between input random variables is included in the analysis. An
illustrative 2-bus network is presented along 24-bus IEEE system
as case studies, showing the capabilities and increased reliability
of the method.

I. INTRODUCTION

POWER system reliability assessments are becoming ever
more critical with changes in utilities from vertically

integrated entities to more decentralized operations, combined
with increasing incorporation of un-controlled distributed
generation from renewables and combined cycle plants [1].
Moreover, introduction of electric vehicle charging may change
the Probability Density Function (PDF) shape of loads on the
network buses from Gaussian to more complicated and general
forms [2]. Useful practical indices, such as the probability of
voltage limit violations at buses, thermal overloading of power
lines, insufficient reactive power etc., are essential parts of
long term expansion planing and real-time operation [3]. These
quantities must be obtained through probabilistic evaluation of
the load flow equations Eq. (1).

Various authors have attempted to address these issues by
adopting simplifying assumptions [4], [5]: DC load flow, lineari-
sation of the full non-linear Load Flow (LF) equations, assumed
independence of variables, and Normalization. Following such
assumptions, one can use various methods to probabilistically
solve the load flow problem. A breakdown of previous works
and assumptions are categorized in Table I.

In the most elementary approach, MonteCarlo (MC) simula-
tion can be used to acquire an approximation (histogram) for
the probability of output variables, however its accuracy is a
direct function of the number of stochastic samples taken. This
can be very time consuming, particularly for larger systems
and when proper statistical convergence is to be achieved.

As an alternative to MC simulations, more direct prob-
abilistic analysis can be used [4]. Linearisation of the LF
equations Eq. (1) based on the Taylor expansion around
the mean values of the random variables is at the core of

such approaches. Various techniques are then deployed to
directly obtain probabilistic representations of output variables
from the input random quantities: convolution techniques,
Fast Fourier Transformations, the method of moments, or
cumulant arithmetic. Amongst them, the method of cumulants
has been recommended for larger systems with non-normal
input variables [6], [7], mostly because it renders an easy-to-
implement formulation, particularly in cases with independent
inputs Random Variables (RVs). The normality assumption
can also lead to a much simpler version of the calculations
[8]. However, by incorporating higher order cumulant tensors
(Section II-E2) it is possible to incorporate quadratic (or higher)
models into cumulant formulations [9].

Evidence of correlation between some of the random
variables, principally in short-term studies Section II-D, has mo-
tivated accounting for dependencies. Full dependency (linear re-
lationship between random variables [10]) non-/monotonically
increasing [11], partial correlation assumptions [12], [13] and
justifying the existence of correlation between only loads
and/or only generations are examples of such efforts [10], [14].
However, there is a need for one unifying framework which
can accept advanced form of correlation and also represent the
dependency structure of the output quantities.

In this paper, a novel cumulant-based calculation method
is presented which captures the non-linearity of the load flow
equations, as well as advanced form of dependency between
the random variables (input and/or output). It can work with
various types of random variable distribution PDFs too. The
following sections detailing the method are as follows. First,
a mathematical introduction to load flow modeling, quadratic
expansion, correlation structures and cumulant calculations
is given. Then the novel methodology is explained, followed
by case studies which demonstrate the abilities of method in
comparison to available alternatives. Finally the conclusion
highlights the main aspects of proposed method and outline
future research plans.

II. MATHEMATICAL BACKGROUND

A. Load Flow Modeling

In the load flow problem, the exact relationship between
complex power and voltage for each bus is represented as [4]:

~S∗i = Pi − jQi = ~V ∗i

n∑
k=i

~Vk ~Yik (1)

Here the admittance of the line ik is ~Yik = Gik +jBik, with
Bik the susceptance and Gik the conductance. ~Si, Pi and Qi

are complex power, active power injection and reactive power
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TABLE I
PROBABILISTIC METHODS AND SIMPLIFICATION APPROACHES

Pseudo-Deterministic MC [1]

PLF
approaches

Direct
solution

FFT [15], [16]
Convolution [4]

Cumulant [17]

Approximate
method

Moment arithmetic [18]
PEM [19]

Limit Theory Interval arithmetic [20]
Heuristic Fuzzy logic [21]

Linearity of
LF equations

Linear [4]
Quadratic [18], [22]–[24]

Multi-linearisation [25], [26]

Dependency
between RVs

Independent [4]
Correlation [7], [19], [22], [27], [28]

Linear Dependence [10], [13]

Normality
of input RVs

Non-Normal [10], [19], [29], [30]
Normal [14], [22], [24], [28], [31]

injections on bus i. Knowing shunt admittance and possible
tap transformer ratios, one can derive a formula for line active
and reactive power flow as (B′ik=0.5Bik):

~S∗ik = ~Vi ~I∗ik
~Iik = ~Yik

(
~Vi − ~Vk

)
− jB′ik ~Vi (2)

Directly observed from the definition (see Eq. (1)), a
nonlinear relationship links the variables of the load flow
equations.

Importantly, depending on the chosen coordinate system
expressing the complex variables, either rectangular or polar,
Eq. (1) is expressed accordingly. In most probabilistic studies,
the polar form is used [4], [17], [22].

For most of the buses (known as PQ or load buses) complex
power injections are defined, and the bus complex voltage
(magnitude and phase angle in polar form) must be calculated.
Usually in load flow models a few voltage-controlled buses
(PV) with fixed voltage magnitude and known real power
generation exist too. A reference (or slack) bus is also chosen
to preserve the balance of power which has dependent power
injections with fixed voltage magnitude of 1.0 and zero phase
angles [4], [17]. Hence voltage angles (δi) for all buses except
the slack bus, and voltage magnitudes (Vi) for PQ buses,
have to be calculated via the LF equations; these unknown
quantities are known as output variables. Such quantities
are not explicitly described as a function of the given input
information. Consequently, the load flow problem can not
be solved directly [32]. This issue introduces difficulties in
deterministic and probabilistic calculations. Section III covers
the common problems associated with the inexplicit nature of
the power injection formulation, with possible steps to tackle
the issue.

Another formulation may be derived for active and re-
active power by substituting the rectangular representation
~Vi = Vi,re + jVi,im for the complex voltage in Eq. (1).
This form has been used in some deterministic load flow
computational approaches in the past [18], [27], [33]–[39].
Note that in order to account for the constant voltage magnitude
in PV buses, an extra equation has to be introduced for the
rectangular form ; thus such a coordinate system is best for
systems with more PQ buses, as well as multi-machine dynamic
response calculations [36]. The extra computation time for the

added equations (squared voltage magnitude) is compensated
by avoiding trigonometric subroutine evaluations, which show
up in the implementation of the polar formulation. It has been
proven that the convergence of the deterministic load flow
calculations only depends on the system itself and not on the
chosen coordinates, as the rate of convergence is determined
by the system eigenvalues; these are invariant with the linear
coordinate transformation [35]. As will be seen in Section III
the rectangular form has advantages for the proposed cumulant-
based probabilistic method.

B. Multiple Deterministic Solutions of the Power Flow Equa-
tions

In deterministic analyses, given different values of P and
Q, two curves (or surfaces) are identified that may intersect
with each other at one, two, or no solution points [33], [34],
[37]. This is visually demonstrated for a 2-bus example in
Section IV. It was shown that the maximum number of solutions
is 2n−1 for an n–bus system, of which some of them may
be inadmissible [33], [37]. For instance, a given value of
transmitted complex power in each line may be obtained by
two sets of high voltage/low current or low voltage/high current,
amongst which the former is typically preferable [37].

There are two important aspects relating to multiple deter-
ministic solutions of the LF. Firstly, any probabilistic solution
of the LF equations corresponds to one deterministic solution.
Secondly, probabilistic assessments cannot be obtained for
inadmissible solutions [33]. Different methods have been
suggested to identify the deterministic solutions of the LF
equations [38], [40] . Moreover, the rectangular form of the
probabilistic equations are used frequently in these studies, and
it has been shown that the polar version has some difficulty in
converging to the second solution [38]. Existence of multiple
solutions for the LF equations is handled in the currently
proposed method, and the input variables’ range is chosen so
that they do not get close to the no-solution range Fig. 1.

C. Quadratic Power Flow and Taylor Expansion

The power flow equations (1), either in rectangular or
polar form, are inherently non-linear. To apply probabilistic
analysis techniques, the functions must be approximated using
a Taylor series expansion [23]. The rectangular form is exactly
represented by a second order expansion, whereas a polar
quadratic expansion is associated with approximation error. If
the input complex loads and generation (control vectors) are u
and nodal complex voltages (state vectors) x, the power flow
equations 1 is functionally expressed as:

f (x) = u (3)

Mean values (known as expected values) of the control vector
(say u0) are then used to calculate the corresponding values
of the state vectors (say x0) from Eq. (3) as:

f (x0) = u0 (4)

Most authors adopt x0 from Eq. (4) as the expansion reference
point for derivative calculations in the Taylor series [4],
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[10], [14]–[16], [29]–[31], [41]–[43]. Once the state vector is
calculated the line power flows (z) are explicitly obtained as:

z = g (x) (5)

A similar procedure as explained earlier is used to evaluate
Eq. (5) for x = x0.

For non-linear transfer functions f , the expected value of
output RVs (i.e. E(x)) have deviations from x0 obtained from
Eq. (4) [4]. MC simulations also prove such deviations [23].
Therefore using x0 as the expansion’s reference does not always
yield a satisfactory estimation of the function, specifically to
estimate the load flow equations in regions far from mean
values. Another reason for such mismatch can be the existence
of large covariances between input RVs. Mathematical proof
of such deviations is given in Section II-E1.

Consequently, in general, the linear models fail to accurately
predict the PDF of the output RVs, chiefly in the tail regions,
the prediction of which is vital in decision making processes.
For example obtaining a correct estimate of the probability
nodal voltages violate their operational limits in the tail region
is critical. To deal with such issues two different methods
have been applied in the literature: to apply higher fidelity
models in lieu of the linear approximation [18], [22], [23],
[44]–[46], or to adopt multiple points picked from the domain
for linearisation of the LF equations, and properly combining
the result afterwards (known as multi-linearisation) [25], [26].
Nevertheless, in the quadratic version, Eq. (3) is expanded
around x0 as:

∆u ≈ J∆x + 1
2H col

(
∆x∆xT

)
(6)

where for a n–dimensional system J and H are the Jacobian
(n× n) and Hessian (n× n2) of Eq. (3). Also it is common
in probabilistic studies to investigate only the variations of the
RVs about their mean values (in p.u.), hence a transformation
of ∆u = u − u0 and ∆x = x − x0 is used throughout the
procedure. The algebraic expression col puts all the elements of
its argument in a column vector to make the dimensions of the
term in parenthesis agreeable with H. Similar procedure can
be applied to obtain the quadratic expansions of the line power
flow Eqs. (5). As for the power injection Eq. (3), assuming
reversibility by considering a limited domain of variation for
x, one can quadratically expand the reverse function as well.
The form of this expansion is expressed as:

∆x ≈ A∆u + 1
2B col

(
∆u∆uT

)
(7)

Due to the inexplicit form of Eq. (3), there is no direct way to
work out B from the second derivatives of the transfer function
f (see Eq. (1)). One can use a first order approximation from
Eq. (6) and introduce its inverse (∆x ≈ J−1∆u) in Eq. (6) to
work out ∆u∆uT from the quadratic terms in the parenthesis
i.e. ∆x∆xT . Multiplying J−1 into both sides and isolating
∆x leads to an approximation for the quadratic form:

∆x ≈ J−1∆u +
(
− 1

2

)
J−1E col

(
∆u∆uT

)
(8)

in which the rows of the matrix E in Eq. (8) are defined as:

Ek =
(
J−1
)T

Hk
(
J−1
)

(9)

This procedure, which involves back-solving of the Hessian
matrix for the reverse function, has been used by most authors
to drive a second order model for the load flow equations [22],
[23], [46]. A study was carried out in the current work to
adopt the same methodology for cumulant based calculations,
and it was observed that this process would introduce some
error, which in conjunction with the cumulant method, would
not always lead into improvement of the final results. As
will be discussed later in Section III, this paper adopts an
alternative methodology which directly uses the Jacobian and
Hessian matrices of Eq. (3), and solves for the cumulants of
the output RVs, therefore avoiding the afore-mentioned steps
in Equations (8) and (9).

It is worth mentioning that using a first order model, one can
combine both the power injection Eq. (3) and line power flow
Eq. (5) into a single linear equation, and directly calculate the
line power flows z from the values of input RVs i.e. u [4], [41],
which significantly reduces the computation time. In quadratic
or higher order models though, the median variables x must be
fully calculated first, then introduced in Eq. (5). This explains
the need for adequate knowledge of the interdependencies in
x. Thus an extra computational step and a large amount of
storage for such information is inevitable.

D. Correlation

The dependency between random RVs is commonly quan-
tified with a covariance matrix, which reflects only the
dependency between two of the RVs in a multivariate set of
random quantities. One way to obtain covariance of RVs is to
use multivariate probability distribution functions of RVs, which
is not practically available in most cases. Another approach is
to use statistical data, if available, for calculation of covariances,
and if not to presume bivariate dependencies using rule-based
techniques for possible existing correlation [7]. Correlation
is the normalized covariance and its elements assume values
between −1 and +1. This gives the factors known as Pearson’s
linear correlation coefficients. Although a strong index to
measure linear dependences, correlation coefficients do not
give enough information, provided the RVs have a non-linear
dependency structure. Owing to the unavailability of joint PDFs
in practical applications, the multivariate input random vector
is described with individual marginal PDFs and a correlation
matrix.

In Probabilistic Load Flow (PLF) practice, three major
sources of correlations have been investigated [7], [10],
[12], [13], [44], [47]: correlation between load/load, gener-
ation/generation and generation/load. The focus of this study
is to mathematically address the introduction of all possible
correlations into the PLF; hence, nothing is presumed for the
individual elements of covariance matrix.

1) Correlation between State RVs: State RVs (i.e. x) com-
puted from Eq. (3) are correlated, and due to non-linearity of
the transfer function have a complicated dependency structure,
making correlation coefficients not fully be satisfactory. Despite
the first order LF modeling, in the quadratic PLF it is not
possible to effectively combine Eq. (3) and Eq. (3). Thus using
cumulants, knowledge of such dependencies is essential to
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work out the line power flows separately calculated in Eq. (3).
In this study, high order cumulant tensors (see Section II-E2)
are used to characterize such dependencies.

E. Cumulant Calculation

Cumulants, or semi-variants, of a RV with known PDF are
calculated from the logarithm of the characteristic function of
the RV. Expanding the result in a Maclaurin series, cumulants
of the PDF are constants of this series expansion [17], [48].
Such a definition directly connects cumulants to moments (the
latter are the constants in Maclaurin series expansion of the
characteristic function of the PDF), and therefore one can
develop simpler relationships between cumulants and moments
without the need for the characteristic function [49], [50].
As explained in [8] and later in Section II-E2, cumulants
and moments can be defined for a multivariate set of RVs
which leads to the definition of cumulant/moment tensors. The
diagonal elements of such tensors are univariate cumulants
of individual RVs, which are extensively used to derive the
PDF of RVs using one of the PDF reconstruction techniques:
Gram-Charlier (GC), Cornish-Fisher (CF), Edgeworth series
[51] and Maximum Entropy (ME) [17], [30]. The latter is used
in this study since it has been proven to work best in PLF
applications, and for lower order of cumulants [17].

Univariate cumulants are invariant to a shift of origin. Also,
if a random variable is multiplied with a factor, say l, then
the cumulant of order r is multiplied by lr (which is why
cumulants are referred to as semi-invariant [49]). Furthermore,
for two independent random variables, the cumulant of order
r of their summation is the sum of the rth-order cumulants of
each RV. For instance, in LF application, using a first order
model for Eq. (3), the univariate cumulants of state RVs are
calculated given the cumulants of control RV [6], [17], [28],
[43], [52] as:

κr∆xi
=
∑
j

(
aji

)r
κr∆uj

(10)

where the aji is the jth element of the ith row in the linearisation
matrix a knowing a = J−1 from Eq. (6) , and κr∆xi

and κr∆uj

are the r-th order cumulants of variations of state vector x and
control vector u respectively. Since the variations are supposed
to be around the mean values, the first cumulants of ∆uj and
hence ∆xi are zero.

Some authors have attempted to incorporate covariance
into cumulant calculations [7], [29], [30], [53]. However, all
previous efforts have used linear models for the load flow
equations. Therefore, the contribution of utilizing high order
cumulant tensors in calculations presented in the current work
is novel and provides a technique for calculations of a complete
set of cumulants, capable of capturing the non-lineariarities of
the governing equations.

1) General Cumulant Calculation: The intention of the
current work was to show the effect of using a non-linear model
instead of the conventional linear form. However, the cumulant
calculations of non-linear functions cannot be summarized
in the simple arithmetic form of Eq. (10). Many researches
have tried to address this issue, yet they all came no closer
than expressions for cumulants of polynomial functions [8],

[54], [55]. A more general form can be found in McCullugh’s
Tensor Methods in Statistics [8] and [48]. However, James
and Mayne [9] simplified the expression for cumulants of
polynomial functions in a more concise form, which is utilized
in this paper. Let ψ, a random vector of {ψa}, be a polynomial
function of χ, a vector of random variables {χi} expressed in
Einstein notation as:

ψa = αa + βa
i χ

i + γaijχ
iχj + · · ·

(
γaij = γaji , etc.

)
(11)

Without loosing generality, assuming all the first order cumu-
lants κi to be zero, the joint cumulants κa...b of such a function,
up to a certain order, can be explicitly expressed in terms of the
input cumulant tensors of κi...j . Complete expansion of these
expressions are given in [9]. In Appendix VII-A a truncated
version of these formulas are given for cumulant tensors up to
order 4 for first four cumulants of output RVs.

All the different cumulant procedures in probabilistic analy-
ses can be derived from these equations as special cases, namely
the linear model [7], models with independent [6] or dependent
RVs [30], [53], or those with full normality assumption of loads
[18].

The intent here is to extend the power flow model up to
second order terms; for this, the constants αa, βa

i and γaij
of Eq. (11) are derived from a Taylor series expansion of
the general power flow equation for variations of state and
control RVs as explained in Eq. (7). Using such variations, as
explained in Section II-C, ensures all the first order cumulants
of κi cancel, and forces all the αa to be zero in Eq. (11). To
capture the non-linearity, the Taylor series are truncated after
quadratic terms. Including more terms in the series requires
more terms from the cumulant expansion formulas to be
included in the calculations of output cumulants, which may
lead to longer compution times. However, as was pointed out
in Section II-A, the order of the polynomials in the rectangular
form of the LF equation is by definition limited to two. Hence,
the quadratic polynomials should give a good approximation
of the LF equations even in the polar form, and of course a
full representation in the rectangular form.

Considering the above, the general form of the cumulant
expansion can be truncated to reduce the time of calculation
and ease the programming effort required, without dramatically
increasing the associated error. Several test cases have been
used to examine the effect of such terms in the precision of
the computations, and eventually a compact from of Eq. (15)
was adopted as the guideline coming out of this study as given
in Appendix VII-A.

Interesting insight can be gleaned from Eq. (15). For instance,
adopting a first order model eliminates the quadratic terms γaij
(or higher) in the expression for κa and cancels the contribution
of covariance terms κij . This highlights the fact that using x0

as the mean value of state vector x, as is usual in linear PLF,
introduces an error in the case of non-linear transfer functions
and/or with significant covariances. Thus, relying on this value
as the reference for the Taylor expansion to obtain elements
of the Jacobian and Hessian as pointed out in Section II-C
may introduce error into the whole process. To avoid this, an
iterative solver is introduced to update the mean values of the
output random variables using the term γaijκ

ij . The difference
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between the mean values of the output RVs and the function
evaluations of the input means has only been investigated in a
few references [18], [23].

2) Cumulant Tensor/Higher Order Cross Cumulants: One
of the main contributions of this work is the introduction of
cumulant tensors as generalizations of the covariance matrix.
As explained in [8], multivariate cross cumulants/moments
can be defined in tensor notation for multivariate analysis.
Cumulant tensors give important information about the de-
pendency structure between χij [8]. For instance, κij is a
2-D cumulant tensor equivalent to the covariance of input
random variables χi and χj in Eq. (15), and similarly κjkl

is the third order cumulant tensor, elements of which returns
the multivariate cross-cumulants of random vector χ = {χj}.
Higher order cumulant tensors, as explained in [8], describe
more complicated characteristics of the dependence structure
between random variables. From a mathematical point of view,
if there exists a strong correlation between RVs, the elements
of each cumulant tensor are as valuable as the diagonal ones.
As such, generally speaking off-diagonal elements in tensor
summations such as those in Eq. (15) should not be excluded
from the calculations. This however demands an accurate
calculation of the cross-cumulant elements. Various techniques
and simplifications can be adopted to acquire an estimation for
multivariate cross-cumulant terms in cumulant tensors using
joint PDF [8], [49] or raw data [8], [49], [56].

Cumulant tensors of order higher than 2 are rarely used in
probabilistic analysis, and only their diagonal terms (univariate
cumulants) are broadly discussed [6], [7], [14], [17], [28]–
[31]. The general cumulant calculation Eq. (15) gives the
opportunity to directly calculate all the permutations of κa...b

for different output Random Variables (RVs), and generate
aforementioned high order cumulant tensors. This information
is easily introduced in the next step of practical calculations,
such as evaluation of reactive nodal injected powers in PV
buses, active/reactive powers in slack bus, or line power flows
Eq. (5). Note that introduction of these tensors paves the way
for using a novel method in calculating the cumulants of voltage
angles and magnitudes, without using back solving procedures,
and hence to achieve a lower error especially in tail regions.
Unfortunately, this necessitates a large memory usage and also
extra nested loops, which may drastically increase the time of
calculations, particularly for large systems.

III. METHODOLOGY OF CUMULANT CALCULATION IN
QUADRATIC LOAD FLOW FUNCTIONS

The main contribution of this work is to blend the gen-
eral cumulant calculation explained in Section II-E1 and
Appendix VII-A with an exact quadratic form of the load flow
equations extended in Section II-C. The rectangular form of
the nodal complex voltage is used to define the power injection
equations (1) in Section II-A to avoid series truncation error,
and extra step to separately calculate the Jacobian and Hessian
of the LF equations.

Contrary to the polar form of load flow equations, Taylor
expansion of quadratic form is unique, hence the curvature
(non-linearity) of the LF hyper-surfaces is fully preserved. This

means regardless of the distance from the expansion reference
point, rectangular form of LF equations is exactly represented
with quadratic Taylor series. Hence the error associated with
polynomial approximation of LF equations is minimal in the
tail regions. As stated in Section II-C such an error becomes
significant using linear expansion of polar form, in the regions
far from the linearisation point. That being the case, multi-
linearisation is suggested in some literatures to reduce tail
errors [25], [26]. Adopting the quadratic polynomials obtained
from rectangular form of LF equations in the calculations
of density functions eliminates the truncation errors of series
expansions. It also helps reducing the errors associated with
the linearisation reference of the polar LFs equations.

Recalling the inexplicit form of the power injection equations
Eq. (3), two procedures are employed; one utilizes back-solving
the Hessian of the inverse quadratic function of Eq. (7) as
explained in Equations (8) and (9), based on [22], [23], [46].
Equation (15) are subsequently used to calculate the cumulants
of output RVs. This method however is not robust and may
fail to retain the PDF of the output quantities precisely, mostly
due to the linear assumptions to approximate the quadratic
terms of inverse function (see Section II-C).

The other approach is a novel iterative solution of the
cumulant tensors using the original quadratic equations of
Eq. (6) obtained from expansion of Eq. (1) using the rectangular
form of the complex nodal voltage. This approach is developed
based on the order of magnitude specified for each contributing
term in the general cumulant calculation formulas Eq. (15).
In these equations the cumulant tensors of the output RVs
(state vector x) are referred to as κi···j . Similarly, the cumulant
tensors of the input RVs (control vector u) are κa···b. The
general cumulant calculation formulas in Eq. (15) define a
non-linear functional relationship between these two sets of
tensors, and should one intend to obtain the cumulants of state
RVs, such a non-linear complicated equation must be solved
for κi···j .

Most of the non-linear terms have insignificant contributions;
for instance, the term 2γaikγ

b
jlκ

ijκkl has limited impact com-
pared to the first term βa

i β
b
jκ

ij . Using only the linear terms
with noticeable impact on the error, primary estimations for
all output cross-cumulant terms are acquired. In the next step
of calculation, a shift made by the non-linear terms with small
orders of magnitude is computed and incorporated back into
Eq. (15) to update the estimation of output cross-cumulant
terms. This procedure iterates a few times and the cumulant
tensors are converged to a reasonable approximation (mismatch
of
∥∥κij∥∥ < 1−10 was achieved with maximum 5 iterations).
Overall calculation can be summarized as follow:

1) Obtain cumulant tensors of u (the input RVs, i.e. known
nodal power injections) from statistical data as explained
in [56] or using predefined PDFs (i.e. κab,κabc,κabcd)

2) Solve deterministic LF equations (see Eq. (4)) to obtain
x0 from u0)

3) Get a Taylor expansion for the rectangular form of LF
equations (i.e. f in Eq. (3)) expanded around expected
values of state RVs (x0). Inevitably such series have a
maximum order of two for rectangular LF equations.
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4) Estimate initial values for cumulant tensors of x (i.e.
κij , κijk, κijkl, using terms with only linear coefficients
in Eq. (15) of Appendix VII-A).

5) Calculate the contributions of the quadratic terms in
Eq. (15) of Appendix VII-A.

6) Subtract the result of 5 from the cumulant tensors of u
(i.e. κab,κabc,κabcd), which were initially determined in
step 1.

7) Recalculate the cumulant tensors of x (i.e. κij , κijk, κijkl)
from the result of 6 using the terms with only linear
coefficients.

8) Go back to step 5 and repeat until an acceptable conver-
gence is occurred (for instance

∥∥κij∥∥ < 1−10).
9) Reconstruct the PDFs of state RVs (i.e. x) using univariate

cumulants from the converged cumulant tensors from 7
(i.e. κij , κijk, κijkl), applying ME [17], [30]

Once a full knowledge of the cumulant tensors of x is
obtained, they can be incorporated back into the power injection
equations Eq. (6) to compute the unknown nodal reactive
powers and slack bus complex power injection, or similarly be
utilized in the line power flow Eq. (5) for calculation of active
and reactive power flows between buses. In all cases Eq. (15)
of Appendix VII-A is used to calculate the cumulant tensors
of non-linear functions, and the ME is applied to reconstruct
the PDF from the cumulants of each variable.

IV. CASE STUDY

Two case studies are used to clearly illustrate the viability
of the quadratic PLF method explained in Section III; a 2-bus
simple system from [27] and a 24-bus IEEE test system from
[57]. Though being basic and simple, the 2-bus system has
been studied in a number of studies [27], [37], [44]. It clearly
provides the platform to explore the existence of multiple
solutions. Moreover important factors such as non-linearity,
or the effect of correlation and joint cumulant tensors on
calculations can be studied in such a 2-bus system. Extending
the size of the system adds to the complexity of computations
and obscures insight into the method itself. Yet to ensure the
abilities of proposed method in realistic cases, a 24-bus IEEE
test systems are also studied. In both examples the Monte
Carlo and the conventional linear approach are also followed
for comparison purposes to depicts the enhancement afforded
by the quadratic method.

2-bus case: Equation (12) gives the rectangular form of
the LF equations of a 2-bus system, which has a load PQ bus
(i = 2) and a slack bus (i = 1); knowing ~Y12 = 1− j 2, one
can formulate the active and reactive power on the load PQ
bus in the rectangular form of the LF equations as (for slack
bus ~Vi = 1 + j 0):

P2 = V 2
2,re + V 2

2,im − V2,re + 2V2,im

Q2 = 2V 2
2,re + 2V 2

2,im − 2V2,re − V2,im (12)

Eliminating the variables V2,re and V2,im, and substituting the
rectangular relationship of V 2

2 = V 2
2,re + V 2

2,im an expression
for the determinant of the Jacobian of Eq. (12) is obtained as:

16P 2
2 − 16P2Q2 + 4Q2

2 − 20P2 − 40Q2 + d2 − 25 = 0 (13)

TABLE II
LOAD FLOW PROBABILISTIC PARAMETERS

Mean SD Probabilist Description

P2 1.0 0.300 Normal Dist. (µ = 1.0, σ = 0.288)
Q2 0.9417 0.1397 Weibull Dist. (Scale = 1, Shape = 8)
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Fig. 1. Contour of det (J) for 2-bus system

where d = det (J). Contours of (13) are plotted in Fig. 1. As is
obvious from the plot, for some combinations of P2 and Q2 the
determinant of the Jacobian does not yield a real value, which
means the LF function of Eq. (12) has no real solution. On the
line of d = 0 there is only one possible solution, while inside
the curve two different ones can be obtained separately. In
probabilistic calculations, for the assessment to stay valid, the
variation of input random variables (here P2 and Q2) must not
cross the boundary of the no-solution regime [33]. As such, the
mean and standard deviation of the input variables in this study
have been chosen as stated in Table II. Considering a goal of
this paper is also to include non-normalities in input RVs, a
Gamma distribution function is assumed for Q2. Correlation
coefficients (ρ) of 0.5, 0.7 and 0.9 between input quantities
are chosen for comparison. Also a baseline MC simulation is
carried out for 5×105 input sequences, and sampled according
to the assumptions in Table II. The scatter of such samples
is shown in Fig. 1, ensuring input RVs do not enter the no-
solution regime. In PLF practice, it is usually important to
check whether the voltage magnitude of buses violate their
limits, which can be investigated using their PDF. In rectangular
form though, as stated in Section II-A, two extra relationship
are implemented to obtain the PDF of nodal voltage magnitude
and phase angle as functions of real and imaginary components
of complex voltage:

|V | =
√
V 2
r + V 2

i and δ = arctan(
Vi
Vr

) (14)

Such an extra step can be carried out easily, yet computational
error involved in linearisation of each of these non-linear
equations may slightly shift the result. This is however not
the case in calculations of line power flows (see Eq. (5)),
considering only the rectangular terms of the nodal complex
voltage are involved. Thus error of calculation stays minimal
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Fig. 2. PDF of Voltage magnitude |V2|

(see Eq. (2)).
In order to mathematically evaluate the accuracy of calculated

PDFs, the Average Root Mean Square (ARMS) index is used,
in which the standard deviation of the error between modeled
PDF and the one obtained in the numerical MC simulations
[17] is computed. This index is calculated for both the proposed
quadratic PLF, and its conventional linear alternative. ARMS of
both voltage magnitude of bus 2, and the power flow between
buses 1 and 2, for a range of correlations is summarized in
Table III. Reconstructed PDFs of the output random variables

TABLE III
QUADRATIC AND LINEAR MODEL COMPARISON - ARMS

Correlation coefficient |V2| |P12|

Lin. Quad. Lin. Quad.
0.5 0.248 0.243 0.072 0.022
0.7 0.089 0.077 0.014 0.005
0.9 0.092 0.061 0.015 0.004

TABLE IV
5% AND 95% CONFIDENCE LEVELS COMPARISON (CORR = 0.7)

P ≤ |V2| |P12|

Lin. Quad. MC Lin. Quad. MC
0.05 1.310 1.294 1.298 1.708 1.687 1.686
0.95 1.485 1.469 1.474 2.198 2.171 2.172

are also presented from both quadratic and linear approaches,
plotted in Fig. 2 for voltage magnitudes and in Figure 3 for
the power flow between bus 1 and 2, against the histograms of
data obtained from Monte Carlo simulations. These plots are
used to examine viability of the proposed method in predicting
the tail region probabilities in comparison with the traditional
linear model.

Qualitatively speaking, from Fig. 2 and Fig. 3, the proposed
quadratic PLF method in conjunction with general cumulant
calculations successfully predicts the non-linearity of state
equations (3,5), particularly in the tail regions. The confidence
levels of 5% and 95% are also given in Table IV, in which the
quadratic PLF is associated with smaller errors. In addition,
from Table III the new technique is seem to be more reliable

Power flow P12(p.u.)

1.2 1.4 1.6 1.8 2 2.2 2.4

P
D
F

0

1

2

3

Monte Carlo
Quadratic PLF
Linear PLF

Fig. 3. PDF of line power flow |P12|

in cases with larger correlations compared to linear PLF. One
explanation for this trend can be attributed to the involvement
of more terms with high order cross cumulant in the quadratic
PLF. Larger correlations increase the relative weight of high
order expansion coefficients as well as high order cumulant
tensors in the final summations.

24-bus IEEE test system: This example attempts to
illustrate the contribution of non-linearity in probabilistic
studies. The IEEE 24-bus has widely been used in reliability
assessments and probabilistic studies [57]. A baseline case
was assumed in which the input RVs were defined using
uncorrelated normal distributions. Mean values for power
injections were set based on nominal operation of the system
as suggested in [57], and their standard deviations were
assumed to be 25% of their mean values. As expected the
reconstructed PDFs for the state variables using a linear series
expansion returned perfectly normal distributions. This can
be proved mathematically, using Eq. (15) of Appendix VII-A
after eliminating all the terms with quadratic coefficients, along
with the normality assumption for input RVs. The same steps
were repeated using the methodology proposed in this paper
using second order expansion of LF equations. The result
is demonstrated for voltage magnitude (in p.u.) of bus-24
(chosen as one of the worst match between MC and 2nd order
expansion), where the plot for quadratic LF exhibits noticeable
improvement in predicting the variation of voltage magnitude
(see Fig. 4). Applying a linear PLF in conjunction with normal
distributions fails to capture any high order cumulants and
therefore the results have zero skewness and kurtosis. Including
quadratic coefficients in the calculations allows for a reasonable
approximation of higher order cumulants and moments.

Table V summarizes the ARMS values calculated for PDFs
of voltage magnitudes obtained for both linear and quadratic
methods. Evidently the proposed method based on quadratic
expansions and cumulant tensors leads to a more accurate
approximation of the distributions, hence the uncertainties
or variations of the important quantities are calculated with
acceptable errors.

Since only normal inputs were used in this example, the
non-linearities/non-normality of the outputs came from the grid
characteristics. For inputs with non-normal distributions such
as wind power injections or electric vehicles charging demands,
the outputs are expected to have larger non-normality (e.g. non-
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Fig. 4. PDF of Voltage magnitude |V2| for bus-24 in IEEE24

zero skewness and kurtosis), hence using linear expansions
of LF equations would exacerbate the errors. In such cases it
would be more important to use the quadratic expansions of
LF equations, in order to capture most of the non-linearity/non-
normality and reduce the errors.

TABLE V
QUADRATIC AND LINEAR ARMS COMPARISON FOR PDFS OF

VOLTAGE MAGNITUDES IN 24-BUS IEEE SYSTEM

Bus Lin. Quad. Bus Lin. Quad.

3 1.0452 0.7149 11 5.9318 2.1018
4 1.5034 1.1636 12 3.9528 1.5851
5 2.1308 1.4536 17 47.7456 25.0820
6 1.1001 0.8567 19 6.1047 3.4197
8 1.8401 0.8267 20 11.6136 6.2195
9 2.1493 1.4335 24 2.0081 1.8667
10 1.8384 1.0164

V. CONCLUSION

This paper considers a new probabilistic method which
uses tensor cumulant calculations to retain the non-linearity
of the load flow equations in the power network. The method
involves an iterative solver to calculate the cumulant tensors
of state random variables from those of input quantities. The
enhanced accuracy of such a technique is demonstrated for two
examples, making the method a reliable candidate for practical
applications, particularly those requiring precision in prediction
of tail regions of the output PDFs. The results are compared
to a baseline Monte Carlo simulation, as well as conventional
PLF techniques working only with the linear form of the LF
equations. Improvement in prediction of the output random
variables’ PDF, voltage angles/magnitude and line power flow
is achieved through the proposed method. A drawback of such
an approach may be the complexity of the implementation of
long expansions of cumulant tensors. An ongoing project is
addressing such issues, together with practical system analysis
applications of the method.
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VII. APPENDICES

A. General Cumulant Calculation of Polynomial

For a polynomial transfer function such as Eq. (11) the
tensors of cumulant for both state (x) and control (u)
RVs are connected through a set of summation series as
explained extensively in a paper by James and Mayne [9],
in which expressions of cumulants up to a certain error
for polynomials with maximum order of three is given.
Applying the rationalizations summarized in Section II-E1
in terms of truncating the variance matrices, streamlining
the input random variable cumulants and simplifying the
permutations, yields a much reduced expression for the output
cumulant tensors. Equation (15) shows the expressions for
the first four cumulants which are used in the current study.
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The summation signs refer to permutations of a, b, c... which
produce distinct terms in the full expression of cumulant
tensors for {ya . . . yb}, where O (νr) is the order of magnitude
of error and νr refers to r{}. A more complete exposition
can be found in [9].


