Selfish Decentralized **Computation Offloading for** Mobile Cloud Computing in Dense Wireless Networks

ABSTRACT

- In this paper we consider selfish mobile devices in a dense wireless network, in which individual mobile devices can offload computations through multiple access points or through the base station to a mobile cloud so as to minimize their computation costs.
- We provide a game theoretical analysis of the problem, prove the existence of pure strategy Nash equilibria, and provide an efficient decentralized algorithm for computing an equilibrium.

• For the case when the cloud computing resources scale with the number of mobile devices we show that all improvement paths are finite.

• Offloading computation to a mobile cloud is a promising solution to augment the computation capabilities of mobile devices.

EXISTING SYSTEM

• Mobile cloud computing has emerged as a promising solution to serve the computational needs of these computationally intenstive applications

PROPOSED SYSTEM

- Furthermore, we provide an upper bound on the price of anarchy of the game, which serves as an upper bound on the approximation ratio of the proposed decentralized algorithms.
- We use simulations to evaluate the time complexity of computing Nash equilibria and to provide insights into the price of anarchy of the game under realistic scenarios.

HARDWARE REQUIREMENTS Intel core i3 • Processor • RAM - 2B Hard Disk - 20 GB •

SOFTWARE REQUIREMENTS

- Operating System : LINUX
- Tool : Network Simulator-2

• Front End : OTCL (Object Oriented Tool Command Language)

REFERENCE

- [2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, "uwave: Accelerometer-based personalized gesture recognition and its applications,", March 2009.
- [3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl, 'Maui: Making smartphones last longer with code offload,' 2010.
- [4] Y. Wen, W. Zhang, and H. Luo, "Energy-optimal mobile appli-cation execution: Taming resource-poor mobile devices with cloud clones,", March 2012.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
Mobile edge computing—a key technology towards 5g," 2015.