Accumulate Then Transmit **Towards Secure Wireless Powered Communication** Networks

ABSTRACT

- This paper considers a wireless powered communication network, where a multi-antenna power beacon is employed to assist an energy constrained source to establish secure communications with a destination in the presence of multiple eavesdroppers.
- We propose a two-phase communication protocol termed as accumulate-then-transmit to enhance network secrecy.

EXISTING SYSTEM

- Traditional wireless devices relies on either batteries such as solar and wind for their energy needs.
- Differently, RF energy harvesting devices can scavenge energy from received RF signals.
- This eliminates both the burden of frequent battery replacement and the restriction on location and/or climate.
- As a result, RF energy harvesting has drawn enormous attention it has also been investigated in various wireless communication networks, including wireless sensor networks, cognitive radio networks, cellular networks

PROPOSED SYSTEM

- In the energy harvesting phase, the PB transfers radio frequency energy to charge the source then in the information transmission phase, the PB acts as a friendly jammer to protect the source transmission against eavesdropping.
- We study the dynamic energy state transitions at the source using an energy dis cretization method and a finite-state Markov Chain.
- Closed-form expressions are derived for connection outage probability, secrecy outage probability, and effective secrecy throughput, with the aim to evaluate both reliability and security of the proposed protocol.

HARDWARE REQUIREMENTS Intel core i3 Processor RAM 2B• 20 GF Hard Disk

SOFTWARE REQUIREMENTS

: LINUX

• Operating System

- Tool
- Front End

- : Network Simulator-2
- : OTCL (Object Oriented Tool Command Language)

REFERENCE

- [1] H. J. Visser and R. J. M. Vullers, "RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Require-ments,", Jun. 2013.
- [2] Y. Liu, S. A. Mousavifar, Y. Deng, C. Leung, and M. Elkashlan, "Wireless Energy Harvesting in a Cognitive Relay Network,", Apr. 2016.
- [3] S. Lohani, R. A. Loodaricheh, E. Hossain, and V. K. Bhargava, 'On Multiuser Resource Allocation in Relay-Based Wireless-Powered Uplink Cellular Networks,', Mar. 2016.

[4] J. Guo, S. Durrani, X. Zhou, and H. Yanikomeroglu, "Outage Probability of Ad Hoc Networks With Wireless Information and Power Transfer,", Aug. 2015.