A Decomposition Method for MIMO OTA Performance Evaluation

ABSTRACT

- For achieving these, this paper proposes a decomposition method for the measurement of multi input multi output devices' over-the-air performance.
- By using the proposed method, the antenna active envelope correlation coefficient, the radiated sensitivity of each receiver, the total isotropic sensitivity, the self-interference, and the desensitization can all be achieved separately, and in OTA working mode.

EXISTING SYSTEM

- Diagnosis and troubleshooting are critical to efficiently detecting the imperfections and improving the radio frequency designs for wireless systems in research and development stage.
- The current standard methods for MIMO OTA measurement are not able to meet the technical requirements for troubleshooting MIMO devices under test.

PROPOSED SYSTEM

- In consideration of the MIMO system's complex array antennas and radio frequency receivers, the parameters obtained.
- A decomposition MIMO OTA test method for MIMO terminals is proposed in this contribution. By using the proposed method, the ECC, the radiated sensitivity the TIS, and the self-interference are all measured separately.

All the measurements are carried out in the radiated working mode, without intrusive connections and in the conditions of multiple receivers' coexistence.

HARDWARE REQUIREMENTS Intel core i3 Processor RAM 2B• 20 GF Hard Disk

SOFTWARE REQUIREMENTS

: LINUX

• Operating System

- Tool
- Front End

- : Network Simulator-2
- : OTCL (Object Oriented Tool Command Language)

REFERENCE

- [1] J. Liu, and W. Sun, "Smart Attacks Against Intelligent Wearables in People-Centric Internet of Things", Dec. 2016.
- [2] J. Liu, H. Nishiyama, N. Kato, and J. Guo, "On the Outage Probability of Device-to-Device Communication Enabled Multi-Channel Cellular Networks: A RSS Threshold-Based Perspective,", Jan. 2016.
- [3] J. Liu, N. Kato, J. Ma and N. Kadowaki, "Device-to-Device Communication in LTE-Advanced Networks: A Survey,", Nov. 2015.
- [4] H. Peng, D. Li, K. Abboud, H. Zhou, H. Zhao, W. Zhuang, and X. Shen, "Performance Analysis of IEEE 802.11p DCF for Multiplatooning Communications With Autonomous Vehicles," 2017.