Using Software Enginee
Evaluate the Quall

&S@) etrlcs to
tatic Code

AnaI ools

e
4C >

b

ABSTRACT

> This paper presents a framework for evaluating the qualigy¥af static code
analysis (SCA) tools in the context of different softwar?éé’r
framework supports up to 38 software engin @g r

ing metrics. The
ics. We applied the

framework against both open-source and available SCA tools.

cyclomatic complex1ty, fan

b The results of our expenment software engineering metrics, such as
é ts, and essential complexity can impact the

ability of a static ¢ 1S tool to identify potential vulnerabilities in source

code.

EXISTING SYSTEM

4

potential vulnerabilities that could eventually compromise softuﬁecurﬂy
SCA is traditionally carried out by running many dlfferen!§ ols against the
1

code base. For example, developers may choose f] of open-source and

commercial SCA tools because dlfferent S Q ay have some overlap and

produce different results.

Likewise, some of the SC ﬁy focus on identifying a specific
vulnerability from t t 0 mmon Weakness Enumerations (CWEs)
Regardless ofﬂ@ol used to locate potential vulnerabilities, the end goal of

this exercise is to improve software quality.

DISADVANTAGES

» Software developers and testers have many SCA tools to choose a challenge

they face is identifying what tool to use against their coda@ mentioned
an

above, different SCA tools have their strengths, w d performance

characteristics, which we call its quality, i @ eing able to correctly identify

potential vulnerabilities.

» The problem is exacerbated @1 tiple SCA tools claim to check the same

vulnerabilities, & ate ferent results.

PROPOSED SYSTEM

b We applied the framework against both open-source a%gmmercially

available SCA tools. @C

» The results of our experiments show that softw (&neering metrics, such as
cyclomatic complexity, fan-out, knots, a$ ntial complexity can impact the

ability of a static code analysis t %)‘e tify potential vulnerabilities in source
code. ? é

ADVANTAGES

b software developers and testers have many SCA too ose from, a
challenge they face is identifying what tool to us r code base. As
mentioned above, different SCA tools have t (ia%s weaknesses, and
performance characteristics, which we ly in terms of being able to

correctly identify potential vulnera

%
» The problem is exacerbate ultiple SCA tools claim to check the same

vulnerabilities, b an@ ferent results. In this scenario, at least one of the
g

SCA tools i1s g both false positives (FPs), which are locations in source

code that are incorrectly labeled to have a flaw, and false negatives

HARDWARE REQUIREMENTS

» Processor :Intel Pentium IV 1GHz 6
» RAM 256MB (Min) (@C
» Hard Drive :5GB free space go

» Monitor 1024 * 768, @ or inch
» Mouse :Scra@e(Logitech)

» Keyboard \ 1 eys

SOFTWARE REQUIREMENTS

» OS : Windows XP/7/8 6
» Front End : Visual Studio 201(0@@.1
» Back End : SQL Server @h isql 3.2

» Browser : An wser

NG =

\

CONCLUSION

Based on our current results the software engineering metr be listed in
decreasing order based on how they affect the TP rate fo 001 From the
experimental results, we observed that most of t tools achieve lower

value of TP rate when the source code ha ree of complexity.

This is because the source cm% more complicated, error prone, and

difficult-to-understand. The gec ¢ of software engineering metric that leads

the SCA tools to JSOW ber of flaws are object-oriented metrics such as
Count Output.& ple, when the source code an SCA tool’s ability to find
more flaws. Last, volume metrics have the least negative impact on the number of

flaws identified by an SCA tool.

REFERENCES

[1] Owasp. “Static Code Analysis.” Internet: https://www.owasp.org/index ?@10 Code

Analysis, Sep. 29,2017 [Oct. 15,2017] g)
[2] Wikipedia. List of tools for static code analysisWikiped; f& Encyclopedia.”

Internet:

https://en.wikipedia.org/w/index. php‘7t1tle—Llst s or static code
analysis&oldid=739038439, Sep. ep 13 ,2017].

[3] U.S. Department of Hom y. ”The Common Weakness Enumeration (CWE)
Initiative, MITRE & ” Internet: http://cwe.mitre.org/index.html, Jan 16, 2018 [Jan
20,2018]. &

[4] A. R. Knudsen. ”Evaluating the ability of static code analysis tools to detect injection

vulnerabilities.” Bachelors thesis, Ume University, Sweden, 2016.

Boland, and P. E. Black. ”Juliet 1.1 C/C++ and Java Test Suite.” IEEE

CS, vol. 45, pp: - Oct.2012.

