Towards supporting Software Engineering using Deep Learning: A case of Software Requirements Classification
Software Requirements are the basis of high-quality software development process, each step is related to SR, these represent the needs and expectations of the software in a very detailed form. The software requirement classification (SRC) task requires a lot of human effort, specially when there are huge of requirements, therefore, the automation of SRC have been addressed using Natural Language Processing (NLP) and Information Retrieval (IR) techniques, however, generally requires human effort to analyze and create features from corpus (set of requirements).

In this work, we propose to use Deep Learning (DL) to classify software requirements without labor intensive feature engineering. The model that we propose is based on Convolutional Neural Network (CNN) that has been state of art in other natural language related tasks. To evaluate our proposed model, PROMISE corpus was used, contains a set of labeled requirements in functional and 11 different categories of nonfunctional requirements. We achieve promising results on SRC using CNN even without handcrafted features
Software requirements can be classified in functional requirements and non-functional requirements.

The functional requirements describe the procedures that the system must perform, on the other hand, non-functional requirements do not describe procedures but constrain the design of software. However, there are a few more sub-categories in non-functional requirements such as performance, maintainability, security, design.
Software requirements can be classified in functional requirements and non-functional requirements. The functional requirements describe the procedures that the system must perform.

On the other hand, non-functional requirements do not describe procedures but constrain the design of software. However, there are a few more sub-categories in non-functional requirements such as performance, maintainability, security, design,
we propose to use Deep Learning (DL) to classify software requirements without labor intensive feature engineering. The model that we propose is based on Convolutional Neural Network (CNN) that has been state of art in other natural language related tasks.

To evaluate our proposed model, PROMISE corpus was used, contains a set of labeled requirements in functional and 11 different categories of nonfunctional requirements. We achieve promising results on SRC using CNN even without handcrafted features.
ADVANTAGES

- The analysis of non-functional requirements has been gained importance at first steps of software development to choose the proper architecture that satisfies them therefore, the early non-functional requirements detection plays a crucial role in software development process, mainly in the design process in order to avoid changes in further steps that may be costly.
HARDWARE REQUIREMENTS

- Processor: Intel Pentium IV 1GHz
- RAM: 256MB (Min)
- Hard Drive: 5GB free space
- Monitor: 1024 * 768, High Color inch
- Mouse: Scroll Mouse (Logitech)
- Keyboard: 104 keys
SOFTWARE REQUIREMENTS

- **OS**: Windows XP/7/8
- **Front End**: Visual Studio 2010/netbeans 7.1
- **Back End**: SQL Server 2005/heidisql 3.2
- **Browser**: Any Web Browser
CONCLUSION

- Based on the obtained results, it can be concluded that DL is useful on software requirements classification. The objective of using DL in this field is to avoid human effort to create and analyze features from data to improve classification, in that way the application of AI in SE could increase improving actual processes and methodologies.

- The dataset was poorly processed to became input of our model on purpose, that was to reason of measure how well DL techniques can create and transform useful features by itself to classify SR, our results show that those processes to learn from automatically generated feature representations are promising, also, it can be concluded that DL techniques to analyze text data are enough mature to be applied to real problems of another discipline without much effort.
REFERENCES

