Secure Deduplication with Efficient and Reliable Convergent Key Management

Abstract:

Data Deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to reduce storage space and upload bandwidth. Promising as it is, an arising challenge is to perform secure Deduplication in cloud Storage. Although convergent encryption has been extensively adopted for secure Deduplication, a critical issue of making convergent encryption practical is to efficiently and reliably manage a huge number of convergent keys. The first attempt to formally address the problem of achieving efficient and reliable key management in secure Deduplication. We first introduce a baseline approach in which each user holds an independent master key for encrypting the convergent keys and outsourcing them to the cloud. However, such a baseline key management scheme generates an enormous number of keys with the increasing number of users and requires users to dedicatedly protect the master keys. To this end, we propose Dekey, a new construction in which users do not need to manage any keys on their own but instead securely distribute the convergent key shares across multiple servers. Security analysis demonstrates that Dekey is secure in terms of the definitions specified in the proposed security model. Convergent encryption, also known as content hash keying, is a cryptosystem that produces identical cipher text from identical plaintext files. This has applications in cloud
computing to remove duplicate files from storage without the provider having access to the encryption keys.

Existing system:

The various kinds of data for each user stored in the cloud and the demand of long term continuous assurance of their data safety, the problem of verifying correctness of data storage in the cloud becomes even more challenging. Cloud Computing is not just a third party data warehouse. The data stored in the cloud may be frequently updated by the users, including insertion, deletion, modification, appending, reordering, etc. One critical challenge of today’s cloud storage services is the management of the ever-increasing volume of data. According to the analysis report of IDC, the volume of data in the wild is expected to reach 40 trillion gigabytes in 2020. The baseline approach suffers two critical deployment issues. First, it is inefficient, as it will generate an enormous number of keys with the increasing number of users. Specifically, each user must associate an encrypted convergent key with each block of its outsourced encrypted data copies, so as to later restore the data copies. Although different users may share the same data copies, they must have their own set of convergent keys so that no other users can access their files. Second, the baseline approach is unreliable, as it requires each user to dedicatedly protect his own master key. If the master key is accidentally lost, then the user data cannot be recovered; if it is compromised by attackers, then the user data will be leaked.
Proposed System:

We propose Dekey, a new construction in which users do not need to manage any keys on their own but instead securely distribute the convergent key shares across multiple servers. Dekey using the Ramp secret sharing scheme and demonstrate that Dekey incurs limited overhead in realistic environments we propose a new construction called Dekey, which provides efficiency and reliability guarantees for convergent key management on both user and cloud storage sides. A new construction Dekey is proposed to provide efficient and reliable convergent key management through convergent key Deduplication and secret sharing. Dekey supports both file-level and block level Deduplication. Security analysis demonstrates that Dekey is secure in terms of the definitions specified in the proposed security model. In particular, Dekey remains secure even the adversary controls a limited number of key servers. We implement Dekey using the Ramp secret sharing scheme that enables the key management to adapt to different reliability and confidentiality levels. Our evaluation demonstrates that Dekey incurs limited overhead in normal upload/download operations in realistic cloud environments.

Software Requirements:

- Operating System: Windows XP.
- Platform: JDK1.6.
- Server side: Glassfish Server 2.1, JSP, Xampp 1.7.1.
- Frontend: JSP.
- Backend: MySQL 5.1.
Hardware Requirements:

- Processor: Pentium 4
- RAM: 512 MB and above
- Hard Disk: 40 GB and above