ABSTRACT

Although kNN search on a road network G_r, i.e., finding k nearest objects to a query user q on G_r, has been extensively studied, existing works neglected the fact that the q’s social information can play an important role in this kNN query. Many real-world applications, such as location-based social networking services, require such a query. In this paper we study a new problem: kNN search on road networks by incorporating social influence (RSkNN). Specifically, the state-of-the-art Independent Cascade (IC) model in social network is applied to define social influence. One critical challenge of the problem is to speed up the computation of the social influence over large road and social networks. To address this challenge, we propose three efficient index-based search algorithms, i.e., road network-based (RN-based), social network-based (SN-based) and hybrid indexing algorithms. In the RN-based algorithm, we employ a filtering-and-verification framework for tackling the hard problem of computing social influence. In the SN-based algorithm, we embed social cuts into the index, so that we speed up the query. In the hybrid algorithm, we propose an index, summarizing the road and social networks, based on which we can obtain query answers efficiently. Finally, we use real road and social network data to empirically verify the efficiency and efficacy of our solutions.
The influence maximization problem under IC model is NP hard and give (1-1/e) approximation algorithm. To avoid the NP hard problem, authors use shortest paths to estimate the IC model. However this estimation leads to a large error from the true value, if the shortest paths are used to estimate the social influence. To compute the true social influence, the most widely adopted method is the monte carlo simulations, i.e., the state of the art algorithm base used in the experiment. In this paper, we also adopt the IC model to define social social influence and compute its true value, but propose advanced algorithms that are hundreds of orders of magnitude faster than the base. Moreover, our studied problem is totally different from the influence maximization.

DISADVANTAGES:

- Existing works neglected the fact that the q’s social information can play an important role in this kNN query.
- The problem is to speed up the computation of the social influence over large road and social networks.
- RN-based indexing algorithm is not very efficient at large-scale road and social networks.
- Not flexible in cost.

MICANS INFOTECH PVT LTD : CADD COLLEGE : MICANS BANKING SCHOOL

No: 19, SIVAM TOWERS, III FLOOR, IG SQUARE, VILLIANUR ROAD, PUDUCHERRY

WWW.MICANSINFOTECH.COM ; micansinfotech@gmail.com; +91 90036 28940; +91 94435 11725
WWW.MATLABPROJECTS.COM; WWW.MICANS.IN; WWW.MICANSIEEEPROJECTKART.COM
The kNN search on road-social networks (RSkNN). To achieve high efficiency, we first propose a road network-based indexing algorithm. In this algorithm, we employ a filtering and verification framework to answer the RSkNN query. Next, to improve the query performance, we design social network-based and hybrid indexing algorithms, namely ISN and IH. Our most efficient algorithm relies on the hybrid index, IH, that provides tight bounds for the road-social search space. Experiments on actual road-social networks demonstrate that our solutions are highly scalable and robust. A direction for future work is to use the techniques in to speed up query.

ADVANTAGE OF PROPOSED SYSTEM:

- To achieve high efficiency, a road network-based indexing algorithm.
- Experiments on actual road-social networks demonstrate that our solutions are highly scalable and robust.
Projects with FUTURE WORK / LIVE DEVELOPMENT / FACE TO FACE CLASSES

ONLY PROJECT CENTER WITH OWN DEVELOPERS - CSE, IT, ECE, MECH, CIVIL, EEE

PONDICHERY – VILUPURAM – CUDDALORE-CHENNAI

SYSTEM SPECIFICATION

HARDWARE REQUIREMENTS

- Processor - Pentium –III
- Speed - 1.1 Ghz
- RAM - 256 MB(min)
- Hard Disk - 20 GB
- Floppy Drive - 1.44 MB
- Key Board - Standard Windows Keyboard
- Mouse - Two or Three Button Mouse
- Monitor - SVGA

SOFTWARE REQUIREMENTS

- Operating System : Windows 8
- Front End : Java
- Database : Mysql

MICANS INFOTECH PVT LTD : CADD COLLEGE : MICANS BANKING SCHOOL

No: 19, SIVAM TOWERS, III FLOOR, IG SQUARE, VILLIANUR ROAD, PUDUCHERRY

No 798 c, NEHRUJI ROAD, VILUPURAM

WWW.MICANSINFOTECH.COM ; micansinfotech@gmail.com ; +91 90036 28940; +91 94435 11725

WWW.MATLABPROJECTS.COM; WWW.MICANS.IN; WWW.MICANSIEEEPROJECTKART.COM