Delay Guaranteed Network
Association for Mobile Machines
in Heterogeneous Cloud Radio
Access Network
ABSTRACT

• We consider two scenarios under the H-CRAN architecture with and without the assistance of the HPN in the network.

• By regarding APs/HPN in the H-CRAN as resources that allocated to mobile machines, a novel proactive network association concept is proposed, and then generalized from one-to-one to multiple-to-multiple case.

• With the assistance of Lyapunov optimization theory, effective bandwidth and capacity theory, we can prove that this proactive network association scheme can guarantee that the queueing delay performance.
EXISTING SYSTEM

• In a heterogeneous cloud radio access network, which consists of multiple access points providing smaller coverage and a high power node providing ubiquitous coverage, mobile machines can connect to multiple APs and a HPN by coordinated multi-point transmission concurrently to achieve ultra-reliable and low-latency communication.

• However, the current network association, which only focuses on switching between two base stations, may not be an efficient scheme in the H-CRAN.
PROPOSED SYSTEM

• In this paper, a proactive network association scheme that can provide multiple-to-multiple switches are proposed.

• We regard the network association as dynamic resource allocation in heterogeneous networks, with two different types of resources horizontal and vertical associations.

• This resource-allocation-based approach is quite different from conventional network association in cellular networks.
HARDWARE REQUIREMENTS

- Processor: Intel Core i3
- RAM: 2GB
- Hard Disk: 20 GB
SOFTWARE REQUIREMENTS

- Operating System : LINUX
- Tool : Network Simulator-2
- Front End : OTCL (Object Oriented Tool Command Language)
REFERENCE


