A Non-Monetary Mechanism for Optimal Rate Control Through Efficient Cost Allocation
ABSTRACT

• The proposed mechanism is based on efficient cost allocation, where the cost is in terms of non-monetary metric, such as average delay or request loss rate.
• Specifically, we present an efficient cost allocation rule for the server to determine the target cost of each client.
• We then propose an intelligent policy for the server to control the costs of the clients to achieve the efficient allocation.
• Furthermore, we design a distributed rate control protocol with provable convergence to the Nash Equilibrium of the system.
EXISTING SYSTEM

• To the optimal rate control problem, where each client optimizes its request arrival rate.
• Existing mechanisms typically rely on monetary exchange which requires additional infrastructure that is not always available.
PROPOSED SYSTEM

• Then we propose our MRQ scheduling policy that can enforce the delay allocation rule effectively in the heavy traffic regime.

• Besides, we design a distributed rate control protocol which can lead the system to the Nash Equilibrium.

• Furthermore, we show that our non-monetary mechanism can be extended to handle loss rate allocation as well.

• Finally, simulation results depict the effectiveness of our mechanism.
HARDWARE REQUIREMENTS

- Processor: Intel core i3
- RAM: 2 GB
- Hard Disk: 20 GB
SOFTWARE REQUIREMENTS

- Operating System : LINUX
- Tool : Network Simulator-2
- Front End : OTCL (Object Oriented Tool Command Language)
REFERENCE


